|
Методы оценки погрешностей измеренийПоказатели точности измерений и формы представления результатов измерений.
ГОСТ 8.011 – 84 устанавливает следующие показатели точности измерений. интервал, в котором погрешность измерения находится с заданной вероятностью; интервал, в котором систематическая составляющая погрешности измерения находится с заданной вероятностью; числовые характеристики систематической составляющей погрешности измерения; числовые характеристики случайной составляющей погрешности измерения; Функция распределения (плотность вероятности) систематической составляющей погрешности измерения; Функция распределения (плотность вероятности) случайной составляющей погрешности измерения. При выражении точности измерений интервалом, в котором с установленной вероятностью находится суммарная погрешность измерения, устанавливается следующая форма представления результатов измерения: А; от Н до В; Р, где А – результат измерения в единицах измеряемой величины; , Н, В – соответственно погрешность измерения с нижней и верхней ее границами в тех же единицах; Р – установленная вероятность, с которой погрешность измерения находится в этих границах. Пример: 121 м/с, от – 1 до 2 м/с, Р =0,99. В общем случае не равно . Если границы погрешности симметричны, т.е. , то результат измерения может быть записан так: А ; Р Это одна из форм представления результата измерения. ГОСТ допускает и другие формы представления результата измерения, отличающиеся от приведенной формы тем, что в них указывают раздельно характеристики систематической и случайной составляющих погрешности измерения. (1).2. Принципы оценивания погрешностей Оценивание погрешностей производится с целью получения объективных данных о точности результата измерения. Точность результата измерения характеризуется погрешностью. Погрешность измерения описывается определенной математической моделью, выбор которой обуславливается имеющимися априорными сведениями об источниках погрешности, а также данными, полученными в ходе измерений. С помощью выбранной модели определяются характеристики и параметры погрешности, используемые для количественного выражения тех или иных ее свойств. Характеристики погрешности принято делить на точечные и интервальные. К точечным относятся СКО случайной погрешности я предел сверху для модуля систематической погрешности, к интервальным — границы неопределенности результата измерения. Если эти границы определяются как отвечающие некоторой доверительной вероятности, то они называются доверительными интервалами. Бели же минимально возможные в конкретном случае границы погрешности оценивают так, что погрешность, выходящую за них, встретить нельзя, то они называются предельными (безусловными) интервалами. В основу выбора оценок погрешностей положен ряд принципов. Во-первых, оцениваются отдельные характеристики и параметры выбранной модели погрешности. Это связано с тем, что модели погрешностей, как правило, сложны и описываются многими параметрами. Определение их всех весьма затруднительно, а иногда и невозможно. Кроме этого, в большинстве практических случаев полное описание модели погрешности содержит избыточную информацию, в то время как знание отдельных ее характеристик вполне достаточно для достижения цели измерения. Во-вторых, оценки погрешности определяют приближенно, с точностью, согласованной с целью измерения. Это обусловлено тем, что погрешности определяют лишь зону неопределенности результата измерения и их не требуется знать очень точно. В-третьих, погрешности оцениваются сверху, поэтому погрешность лучше преувеличить, чем преуменьшить, так как в первом случае снижается качество измерений, а во втором — возможно полное обесценивание результатов всего измерения. В-четвертых, поскольку стремятся получить реалистические значения оценки погрешности результата измерения, т.е. не слишком завышенные и не слишком заниженные, точность измерений должна соответствовать рели измерения. Излишняя точность ведет к неоправданному расход у средств и времени. Недостаточная точность в зависимости от цели намерения может привести к признанию годным в действительности негодного изделия, к принятию ошибочного решения и т. п. Оценивание погрешностей может проводится до (априорное) и после (апостериорное) измерения. Априорное оценивание — это проверка возможности обеспечить требуемую точность измерений, проводимых в заданных условиях выбранным методом с помощью конкретных СИ. Оно проводится в случаях: • нормирования метрологических характеристик СИ; • разработки методик выполнения измерений; • выбора средств измерений для решения конкретной измерительной задачи; • подготовки измерений, проводимых с помощью конкретного СИ. Апостериорную оценку проводят в тех случаях, когда априорная оценка неудовлетворительна или получена на основе типовых метрологических характеристик, а требуется учесть индивидуальные свойства используемого СИ. Такую оценку следует рассматривать как коррекцию априорных оценок. (2).2. Способы обнаружения и устранения систематических погрешностей Результаты наблюдений, полученные при наличии систематической погрешности, называются неисправленными. При проведении измерений стараются в максимальной степени исключить или учесть влияние систематических погрешностей. Это может быть достигнуто следующими путями: • устранением источников погрешностей до начала измерений. В большинстве областей измерений известны главные источники систематических погрешностей и разработаны методы, исключающие их возникновение или устраняющие их влияние на результат измерения. В связи с этим в практике измерений стараются устранить систематические погрешности не путем обработки экспериментальных данных, а применением СИ, реализующих соответствующие методы измерений; • определением поправок и внесением их в результат измерения; • оценкой границ неисключенных систематических погрешностей. Постоянная систематическая погрешность не может быть найдена методами совместной обработки результатов измерений. Однако она не искажает ни показатели точности измерений, характеризующие случайную погрешность, ни результат нахождения переменной составляющей систематической погрешности. Действительно, результат одного измерения где хИ — истинное значение измеряемой величины; — i-я случайная погрешность; — i-я систематическая погрешность. После усреднения результатов многократных измерений получаем среднее арифметическое значение измеряемой величины Если систематическая погрешность постоянна во всех измерениях, т.е. , то Таким образом, постоянная систематическая погрешность не устраняется при многократных измерениях. Постоянные систематические погрешности могут быть обнаружены лишь путем сравнения результатов измерений с другими, полученными с помощью более высокоточных методов и средств. Иногда эти погрешности могут быть устранены специальными приемами проведения процесса измерений. Эти методы рассмотрены ниже. Наличие существенной переменной систематической погрешности искажает оценки характеристик случайной погрешности и аппроксимацию ее распределения. Поэтому она должна обязательно выявляться и исключаться из результатов измерений. Исключение систематических погрешностей путем введения поправок. В ряде случаев систематические погрешности могут быть вычислены и исключены из результата измерения. Для этого используются поправки. Поправка Cj – величина, одноименная измеряемой, которая вводится в результат измерения с целью исключения составляющих систематической погрешности . При Cj = - j-я составляющая систематической погрешности полностью устраняется из результата измерения. Поправки определяются экспериментально или в результате специальных теоретических исследований. Они задаются в виде таблиц, графиков или формул. Введением одной поправки устраняется влияние только одной составляющей систематической погрешности. Для устранения всех составляющих в результат измерения приходится вводить множество поправок. При этом вследствие ограниченной точности определения поправок случайные погрешности результата измерения накапливаются и его дисперсия увеличивается. Так как поправка известна с определенной точностью, то она характеризуется статистически — средним значением поправки С и СКО Sc. При исправлении результата путем введения поправок Cj, где j=l, 2,..., m, по формуле дисперсия исправленного результата где — оценка дисперсии неисправленного результата; — оценка дисперсии j-й поправки. Как видно, с одной стороны, уточняется результат измерения, а с другой — увеличивается разброс за счет роста дисперсии. Следовательно, необходимо найти оптимум. Пусть при измерении постоянной величины Q получено (рис. 5.1) значение , где — оценка среднего арифметического неисправленного результата измерений; tp — коэффициент Стьюдента.
После введения поправки С ± tpSc результат измерения
Рис. (2).1. Устранение систематической погрешности путем введения поправки где
Максимальные доверительные значения погрешности результата измерения до и после введения поправки равны соответственно Поправку имеет смысл вводить до тех пор, пока . Отсюда следует, что Если Sc/S «1, то, раскладывая уравнение в степенной ряд, получим С > 0,5 Sc / S2. Из этого неравенства видно, что если оценка среднего квадратического отклонения поправки , то поправку имеет смысл вводить всегда. В практических расчетах погрешность результата обычно выражается не более чем двумя значащими цифрами, поэтому поправка, если она меньше пяти единиц младшего разряда, следующего за последним десятичным разрядом погрешности результата, все равно будет потеряна при округлении и вводить ее не имеет смысла.
ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|