|
Структура технического нейрона. ПерцептронМодель технического нейрона МакКаллок и Питтс предложили использовать бинарный пороговый элемент в качестве модели искусственного нейрона. Этот математический нейрон вычисляет взвешенную сумму n входных сигналов xj, j = 1, 2... n, и формирует на выходе сигнал величины 1, если эта сумма превышает определенный порог u, и 0 - в противном случае. Часто удобно рассматривать u как весовой коэффициент, связанный с постоянным входом x0 = 1. Положительные веса соответствуют возбуждающим связям, а отрицательные - тормозным. МакКаллок и Питтс доказали, что при соответствующим образом подобранных весах совокупность параллельно функционирующих нейронов подобного типа способна выполнять универсальные вычисления. Здесь наблюдается определенная аналогия с биологическим нейроном: передачу сигнала и взаимосвязи имитируют аксоны и дендриты, веса связей соответствуют синапсам, а пороговая функция отражает активность сомы. Одним из методов решения задач обучения распознаванию образов основан на моделировании гипотетического механизма человеческого мозга. При таком подходе уровень биологических знаний или гипотез о биологических механизмах является исходной предпосылкой, на которой базируются модели этих механизмов. Примером такого направления в теории и практике проблемы ОРО является класс устройств, называемых перцептронами. Нужно отметить, что перцептроны на заре своего возникновения рассматривались только как эвристические модели механизма мозга. Впоследствии они стали основополагающей схемой в построении кусочно-линейных моделей, обучающихся распознаванию образов. В наиболее простом виде перцептрон состоит из совокупности чувствительных (сенсорных) элементов (S-элементов), на которые поступают входные сигналы. S-элементы случайным образом связаны с совокупностью ассоциативных элементов (А-элементов), выход которых отличается от нуля только тогда, когда возбуждено достаточно большое число S-элементов, воздействующих на один А-элемент. А-элементы соединены с реагирующими элементами (R-элементами) связями, коэффициенты усиления (v) которых переменны и изменяются в процессе обучения. Взвешенные комбинации выходов R-элементов составляют реакцию системы, которая указывает на принадлежность распознаваемого объекта определенному образу. Если распознаются только два образа, то в перцептроне устанавливается только один R-элемент, который обладает двумя реакциями — положительной и отрицательной. Если образов больше двух, то для каждого образа устанавливают свой R-элемент, а выход каждого такого элемента представляет линейную комбинацию выходов A-элементов: (ф. 1) где Rj — реакция j-го R-элемента; xi — реакция i-го A-элемента; vij — вес связи от i-го A-элемента к j-му R элементу; Qj — порог j-го R-элемента. Аналогично записывается уравнение i-го A-элемента: (ф. 2) Здесь сигнал yk может быть непрерывным, но чаще всего он принимает только два значения: 0 или 1. Сигналы от S-элементов подаются на входы А-элементов с постоянными весами равными единице, но каждый А-элемент связан только с группой случайно выбранных S-элементов. Предположим, что требуется обучить перцептрон различать два образа V1 и V2. Будем считать, что в перцептроне существует два R-элемента, один из которых предназначен образу V1, а другой — образу V2. Перцептрон будет обучен правильно, если выход R1 превышает R2, когда распознаваемый объект принадлежит образу V1, и наоборот. Разделение объектов на два образа можно провести и с помощью только одного R-элемента. Тогда объекту образа V1 должна соответствовать положительная реакция R-элемента, а объектам образа V2 — отрицательная. Перцептрон обучается путем предъявления обучающей последовательности изображений объектов, принадлежащих образам V1 и V2. В процессе обучения изменяются веса vi А-элементов. В частности, если применяется система подкрепления с коррекцией ошибок, прежде всего учитывается правильность решения, принимаемого перцептроном. Если решение правильно, то веса связей всех сработавших А-элементов, ведущих к R-элементу, выдавшему правильное решение, увеличиваются, а веса несработавших А-элементов остаются неизменными. Можно оставлять неизменными веса сработавших А-элементов, но уменьшать веса несработавших. В некоторых случаях веса сработавших связей увеличивают, а несработавших — уменьшают. После процесса обучения перцептрон сам, без учителя, начинает классифицировать новые объекты. Если перцептрон действует по описанной схеме и в нем допускаются лишь связи, идущие от бинарных S-элементов к A-элементам и от A-элементов к единственному R-элементу, то такой перцептрон принято называть элементарным a-перцептроном. Обычно классификация C(W) задается учителем. О перцептронах было сформулировано и доказано несколько основополагающих теорем. Теорема 1. Класс элементарных a-перцептронов, для которых существует решение для любой задуманной классификации, не является пустым. Эта теорема утверждает, что для любой классификации обучающей последовательности можно подобрать такой набор (из бесконечного набора) А-элементов, в котором будет осуществлено задуманное разделение обучающей последовательности при помощи линейного решающего правила). Теорема 2. Если для некоторой классификации C(W) решение существует, то в процессе обучения a -перцептрона с коррекцией ошибок, начинающегося с произвольного исходного состояния, это решение будет достигнуто в течение конечного промежутка времени.
ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|