|
Обучение искусственных нейронных сетей: обучение без учителя. Сигнальный метод Хебба, алгоритм Кохонена, обучение методом соревнования.Главная черта, делающая обучение без учителя привлекательным, – это его "самостоятельность". Процесс обучения, как и в случае обучения с учителем, заключается в подстраивании весов синапсов. Некоторые алгоритмы, правда, изменяют и структуру сети, то есть количество нейронов и их взаимосвязи, но такие преобразования правильнее назвать более широким термином – самоорганизацией. Очевидно, что подстройка синапсов может проводиться только на основании информации, доступной в нейроне, то есть его состояния и уже имеющихся весовых коэффициентов. Сигнальный метод Хебба Сигнальный метод обучения Хебба заключается в изменении весов по следующему правилу: (1) где yi(n-1) – выходное значение нейрона i слоя (n-1), yj(n) – выходное значение нейрона j слоя n; wij(t) и w ij (t-1) – весовой коэффициент синапса, соединяющего эти нейроны, на итерациях t и t‑1 соответственно; a – коэффициент скорости обучения. Здесь и далее, для общности, под n подразумевается произвольный слой сети. При обучении по данному методу усиливаются связи между возбужденными нейронами. Существует также и дифференциальный метод обучения Хебба. (2) Здесь yi(n-1)(t) и yi(n-1)(t-1) – выходное значение нейрона i слоя n-1 соответственно на итерациях t и t-1; yj(n)(t) и yj(n)(t-1) – то же самое для нейрона j слоя n. Как видно из формулы (2), сильнее всего обучаются синапсы, соединяющие те нейроны, выходы которых наиболее динамично изменились в сторону увеличения. Полный алгоритм обучения с применением вышеприведенных формул будет выглядеть так: 1) На стадии инициализации всем весовым коэффициентам присваиваются небольшие случайные значения. 2) На входы сети подается входной образ, и сигналы возбуждения распространяются по всем слоям согласно принципам классических прямопоточных сетей, то есть для каждого нейрона рассчитывается взвешенная сумма его входов, к которой затем применяется активационная (передаточная) функция нейрона, в результате чего получается его выходное значение yi(n), i=0...Mi-1, где Mi – число нейронов в слое i; n=0...N-1, а N – число слоев в сети. 3) На основании полученных выходных значений нейронов по формуле (1) или (2) производится изменение весовых коэффициентов. 4) Цикл с шага 2, пока выходные значения сети не стабилизируются с заданной точностью. Применение этого нового способа определения завершения обучения, отличного от использовавшегося для сети обратного распространения, обусловлено тем, что подстраиваемые значения синапсов фактически не ограничены. На втором шаге цикла попеременно предъявляются все образы из входного набора. Алгоритм Кохонена алгоритм Кохонена – предусматривает подстройку синапсов на основании их значений от предыдущей итерации. (3) Другой вариант – расчет расстояния между этими векторами в p-мерном пространстве, где p – размер векторов. , (4) где j – индекс нейрона в слое n, i – индекс суммирования по нейронам слоя (n-1), wij – вес синапса, соединяющего нейроны; выходы нейронов слоя (n-1) являются входными значениями для слоя n. Корень в формуле (4) брать не обязательно, так как важна лишь относительная оценка различных Dj. При использовании обучения по алгоритму Кохонена существует практика нормализации входных образов, а так же – на стадии инициализации – и нормализации начальных значений весовых коэффициентов. , (5) где xi – i-ая компонента вектора входного образа или вектора весовых коэффициентов, а n – его размерность. Это позволяет сократить длительность процесса обучения. Инициализация весовых коэффициентов случайными значениями может привести к тому, что различные классы, которым соответствуют плотно распределенные входные образы, сольются или, наоборот, раздробятся на дополнительные подклассы в случае близких образов одного и того же класса. Для избежания такой ситуации используется метод выпуклой комбинации. Суть его сводится к тому, что входные нормализованные образы подвергаются преобразованию: , (6) где xi – i-ая компонента входного образа, n – общее число его компонент, a(t) – коэффициент, изменяющийся в процессе обучения от нуля до единицы, в результате чего вначале на входы сети подаются практически одинаковые образы, а с течением времени они все больше сходятся к исходным. Весовые коэффициенты устанавливаются на шаге инициализации равными величине , (7) где n – размерность вектора весов для нейронов инициализируемого слоя. На основе рассмотренного выше метода строятся нейронные сети особого типа – так называемые самоорганизующиеся структуры. Для них после выбора из слоя n нейрона j с минимальным расстоянием Dj (4) обучается по формуле (3) не только этот нейрон, но и его соседи, расположенные в окрестности R. Величина R на первых итерациях очень большая, так что обучаются все нейроны, но с течением времени она уменьшается до нуля. Таким образом, чем ближе конец обучения, тем точнее определяется группа нейронов, отвечающих каждому классу образов.
Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|