|
Для специальности «Прикладная математика».Стр 1 из 3Следующая ⇒ Для специальности «Прикладная математика». Часть I. Аналитическая геометрия. ГОМЕЛЬ 2004
Аналитическая геометрия - это раздел математики, в котором геометрические объекты изучаются с помощью алгебраических методов, в основе которых лежит понятие координат. ГЛАВА 1. ВЕКТОРЫ И КООРДИНАТЫ Понятие вектора Пусть А – произвольное непустое множество. Декартовым квадратом А называется множество A 2 = Бинарным отношением на А называется любое подмножество множества A 2. Отношением эквивалентности на А называется такое бинарное отношение на А, которое удовлетворяет следующим условиям: 1) (рефлексивность); 2) если (,b) то (b, ) (симметричность); 3) если (,b) то (,c) (транзитивность).
Теорема. Любое отношение эквивалентности на множестве А определяет разбиение этого множества на попарно непересекающиеся классы (классы эквивалентности). Обратно, любое разбиение множества А на попарно непересекающиеся классы определяет отношение эквивалентности на А.
Направленный отрезок – отрезок, у которого указано, какая точка является началом, а какая концом. Обозначается . Пусть заданы направленные отрезки и , лежащие на двух различных параллельных прямых, и плоскость , проходящая через точки В и D. Тогда плоскость разбивает все пространство на два полупространства. Если при этом точки B и D лежат в одном полупространстве, то говорят, что направленные отрезки и одинаково направлены (обозначается ). В противном случае, они называются противоположно направленными (обозначается ). Если направленные отрезки и лежат на одной прямой, то они одинаково (противоположно) направленны, если существует такой третий направленный отрезок , который одинаково направлен с каждым из направленных отрезков и (противоположно направлен в точности с одним из направленных отрезков или ). Абсолютной величиной или модулем (длиной) направленного отрезка называется длина этого направленного отрезка и обозначается | |. Два направленных отрезка и называются равными, если и , при этом пишут = ,
Теорема. Отношение равенства направленных отрезков является отношением эквивалентности.
Тогда вектором называется абстрактный объект, совпадающий с некоторым классом эквивалентности. Таким образом, каждый из равных друг другу направленных отрезков считается представлением (изображением) данного вектора, а неравные направленные отрезки считаются представлением разных векторов. Поэтому в дальнейшем вектор изображается точно так, как и соответствующий ему направленный отрезок.
Векторы и называются коллинеарными, если образующие их направленные отрезки параллельны одной и той же прямой (обозначается || ). Три и более векторов называются компланарными, если образующие их направленные отрезки параллельны некоторой плоскости. Нулевым вектором называется вектор, начало которого совпадает с его концом (обозначается ). Направление нулевого вектора не определено. Проекции.
Назовем осью прямую, на которой указано направление, которое будем называть положительным. Пусть l - некоторая ось, α - плоскость, непараллельная оси l. Через произвольную точку А пространства проведем плоскость α'||α и обозначим точку пересечения плоскости α' c осью l через А1. Тогда точка А1 называется проекцией точки А на ось l относительно плоскости α. В частности, если α l, то проекция называется прямоугольной, или ортогональной.
Пусть теперь задан вектор . Возьмем проекции А1 и В1 точек А и В на ось l относительно плоскости α. Тогда вектор называется проекциейвектора на ось l относительно плоскости α. Величиной проекции вектора на ось l относительно плоскости α называется число, равное: а) | |, если направление вектора совпадает с направлением оси l; б) - | |, если направление противоположно направлено оси l. Обычно из контекста ясно о проекции относительно какой плоскости идет речь. Поэтому величину проекции вектора на ось l будем обозначать Пр l , а для ортогональной проекции использовать обозначение пр l . Пусть α - некоторая плоскость и l – прямая, такая, что l не параллельна α. Через произвольную точку А пространства проведем прямую l 1 || l и обозначим точку пересечения прямой l 1 с плоскостью α через А1. Точка А1 называется проекциейточки А наплоскость α относительнопрямой l. Если прямая l α, то проекция называется прямоугольной, или ортогональной. Определение. Углом между двумя векторами, или между осями, или между вектором и осью называется наименьший угол α, на который надо повернуть один из векторов или одну из осей до совпадения по направлению с другим вектором или осью. Из определения следует, что 0 α π. Угол между векторами или между осями, или между вектором и осью будем обозначать соответственно: (), (), ().
Теорема. Проекция вектора на ось обладает следуицики свойствами: 1) ; 2) 3) .
1) 2)
Определение. Векторным произведением двух векторов и называется вектор , обозначаемый ´ и удовлетворяющий следующим условиям: 1) | |=| |×| |×sin ( ^, ); 2) ^ , ^ ; 3) векторы , , образуют правую тройку векторов.
Координаты на прямой.
Прямая l, на которой задана точка 0, называемая началомкоординат, задан единичный вектор , называемый ортом, называется координатнойосью. Пусть М - произвольная точка прямой. Тогда вектор кол- линеарен вектору и, значит, . Вектор называется радиус-вектором точки М, а число х называется координатойточки М на координатной оси l (обозначается: М(х)) или координатой радиус-вектора (обозначается: =(х)). Так как - единичный вектор, то каждой точке М на оси l поставлено в соответствие вполне определенное действительное число – ее координата. Обратно, для каждого действительного числа х найдется единственная точка М оси l, координата которой равна х. Таким образом, положение любой точки координатной оси однозначно определяется заданием координаты этой точки.
Координаты на плоскости.
Пусть на плоскости α заданы две координатные оси ОХ и OY с неколлинеарными ортами и cоответственно. Тогда тройка (О, , ) называется афинным репером, или афинной системой координат плоскости α. Точка 0 называется началом кооpдинат, векторы и - базисными векторами. Если М – произвольная точка на плоскости α, то Числа х и у называются афинными координатами точки М в системе (0, , ), причем х называется абсциссой, а у – ординатой (записывается: М(х,у)). Вектор называется радиус-вектором точки М, числа х, у - координатами вектора (записывается: =(х,у)). Афинная система координат (0, , ) обозначается также OXY. Ось ОХ называется осью абсцисс, ось OY - осью ординат. Теорема. Пусть = , где . Тогда Следствие 1. Пусть даны точки А (х 1, y 1) и В (х 2, у 2). Тогда Следствие 2. Два вектора = (х 1, у 1) и = (х 2, у 2) коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т.е. . Афинная система координат (0, , ), в которой орты и взаимно ортогональны, называется декартовой, или прямоугольной системой координат. В этом случае орты и обозначаются соответственно и .
Координаты в пространстве.
Определение. Пусть в пространстве заданы три координатные оси OX, OY и OZ с некомпланарными ортами , , соответственно. Тогда четверка (0, , , ) называется афинным репером, или афинной системой координат в пространстве. Точка 0 - начало координат, векторы , , - базисные векторы. Так как векторы , , - линейно независимы, то для любого вектора имеет место разложение: = x + y + z Числа x, y, z называются координатами точки М (записывается: М (х, у, z)), называется радиус-вектором точки М с координатами х, у, z (записывается: = (х, у, z)), причем х называется абсциссой, у - ординатой, z - аппликатой.
Афинную систему часто обозначают через OXYZ. Оси OX, OY, OZ называют соответственно осями абсцисс, ординат и аппликат. Плоскости, определяемые координатными осями, т.е. OXY, OYZ, OXZ, называют координатными плоскостями. Эти плоскости делят все пространство на восемь частей, называемых координатными октантами. Если упорядоченная тройка векторов , , является правой, то афинную систему называют правой, в противном случае - левой. В дальнейшем под афинной системой будем понимать правую систему. Если базисные векторы , , попарно взаимно ортогональны, то афинная система координат называется декартовой (прямоугольной), а базисные векторы обозначается соответственно . В частности, если даны точки А (х 1, у 1, z 1), В (х 2, у 2, z 2), то
Векторы = (х1,у1,z1) и = (х2,у2,z2) коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т.е.
Полярные координаты. Возьмем на плоскости произвольную точку 0, которую назовем полюсом, и ось ОР, задаваемую единичным вектором , которую назовем полярной осью. Тогда положение произвольной точки М плоскости можно определить двумя числами: r -длина отрезка ОМ и φ - угол, который образует отрезок ОМ с осью ОР в положительном направлении, т.е. при движении против часовой стрелки. Величины r и φ называются полярными координатами точки М, r- полярный радиус, φ- полярный угол. При этом считаем, что полярные координаты точек плоскости изменяются в следующих пределах: . Таким образом, получаем систему координат, которая называется полярной системой координат. С прямоугольными координатами полярные связаны следующими соотношениями: х = r cosφ, у = r sinφ.
Так как х 2 + у 2 = r 2, то Прямая на плоскости
Пусть в плоскости α задана афинная система координат (0, , ) и прямая l, принадлежащая этой плоскости α. Составим уравнение прямой l. Заметим, что положение прямой l однозначно определено, если известен вектор, коллинеарный этой прямой и называемый направляющим вектором прямой, и точка, через которую прямая проходит. Очевидно, что в качестве направляющего вектора прямой можно взять любой вектор, коллинеарный данной прямой. Пусть = (m1,n1) и =(m2,n2) - какие-либо направляющие векторы прямой l. Тогда из необходимого и достаточного условия коллинеарности двух векторов следует, что Если прямая l не параллельна оси OY, то следовательно, - угловой коэффициент относительно выбранной системы координат. В частности, для прямоугольной системы координат (0, ) k = tgα, где α – угол между осью ОХ и любым направляющим вектором прямой l. Угол α называется углом наклона прямой l к оси ОХ.
Если прямая l параллельна оси ОY, то l пересекает ось OХ в некоторой точке Р(а,0). Тогда все точки прямой и только они удовлетворяют соотношению x = a, Р(а,0) - уравнение прямой, проходящей через точку параллельно оси ОУ. Заметим, что в качестве направляющего вектора такой прямой можно взять вектор (0,р), где р - произвольное отличное от нуля число. В этом случае, как видим угловой коэффициент прямой не существует. Пусть прямая l проходит через точку A (а, b) и имеет угловой коэффициент k. Возьмем произвольную точку М (х, у) на прямой l. Тогда =(х - а, у - b) - направляющий вектор прямой l.
Следовательно, Отсюда y – b = k (x - а) -уравнение прямой с угловым коэффициентом k.
Пучок прямых
Пучком прямых называется совокупность всех прямых на плоскости, проходящих через некоторую точку, называемую центром пучка. Для задания уравнения пучка достаточно знать какие-либо две прямые l 1 и l 2, проходящие через центр пучка. Пусть в аффинной системе координат прямые l 1 и l 2 заданы уравнениями l 1: A1 x + B1 y + C1 = 0, l 2: A2 x + B2 y + C2 = 0.
Уравнение: A1 x + B1 y + С + λ (A2 х + В2 y + C) = 0 - уравнение пучка прямых, определяемого уравнениями l1 и l2. В дальнейшем, под системой координат будем понимать прямоугольную систему координат.
Угол между двумя прямыми Под углом φ между двумя прямыми l 1 и l 2 будем понимать наименьший угол, на который надо повернуть одну прямую, чтобы она стала параллельной другой прямой или совпала с ней, то есть 0 £ φ £
Пусть прямые заданы общими уравнениями. Очевидно, что
cosφ=
Пусть теперь прямые l 1 и l 2 задана уравнениями с угловыми коэффициентами k 1 в k 2 соответственно. Тогда Наконец, если и - направляющие вектора прямых, то
III ПЛОСКОСТЬ
Общее уравнение плоскости
Пусть в прямоугольной системе координат OXYZ задана плоскость α, проходящая через точку М0(х 0, у 0, z 0). Возьмем произвольную точку М(х, у, z) α и обозначим (А,В,C) – нормальный вектор плоскости α. Очевидно, что , то есть (х - х 0) + В(у - у 0) + C(z - z 0) = 0 Раскроем скобки и обозначим D= -А x 0 - В у 0 - C z 0. Получим
A x + B y + С z + D = 0 (*)
- уравнение плоскости в общем виде или общее уравнение плоскости.
Теорема 3.1 Линейное уравнение (*) (A2+B2+C2 ≠ 0) является уравнением плоскости и обратно, любое уравнение плоскости является линейным.
Пусть 1) D = 0, тогда плоскость проходит через начало координат. 2) А = 0, тогда плоскость параллельна оси ОХ 3) А = 0, В = 0, тогда плоскость параллельна плоскости OXY.
Пусть в уравнении все коэффициенты отличны от нуля. Тогда - уравнение плоскости в отрезках. Числа |а|, |b|, |с| указывают на величины отрезков, отсекаемых плоскостью на координатных осях.
Пучок и связка плоскостей
Пучком плоскостей называется множество всех плоскостей, проходящих через некоторую прямую, называемую осью пучка. Пусть в системе координат ОХУZ заданы две пересе-кающиеся плоскости α1 и α2. Тогда уравнение пучка имеет вид А1 х + B1 y + C1 z + D1 + λ(A2 x + B2 y + C2 z + D2) = 0, где λ R.
Связкой плоскостей называется множество всех плоскостей, проходящих через некоторую точку, называемую центром связки. Если S0 (x 0, y 0, z 0) – центр связки, то уравнение связки с центром в точке S0 имеет вид А(х - x 0) + В(у - y 0) + С(z - z 0) = 0, где А, В и С – произвольные действительные числа, одновременно не равные нулю.
для специальности «Прикладная математика». Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|