Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Спутниковые системы управления и контроля (ССУ и К), задачи и принцып организации. Бортовая аппаратура ИСЗ (искусственный спутник земли) спутниковых систем управления и контроля.





Спутниковые системы управления и контроля (ССУ и К) представляют собой совокупность радиотехнических средств контроля и управления движением и режимами работы бортовой аппаратуры ИСЗ и других космических аппаратов. СУ и К включает в себя наземные и бортовые радиотехнические средства.

Наземная часть состоит из сети командно-измерительных пунктов (КИП), координационно-вычислительного центра (КВЦ) и центрального пункта управления (ЦУП), связанных между собой линиями связи и передачи данных.

Сеть КИП необходима, во - первых потому, что зона видимости движущихся ИСЗ с одного КИП, расположенного на поверхности Земли, ограничена в пространстве и во времени, во-вторых – точность определения параметров движения ИСЗ с одного КИП недостаточна, чем больше независимых измерений будет проведено, тем выше точность. Непрерывное наблюдение за каждым ИСЗ требует использования сети из нескольких десятков КИП (некоторые из них могут располагаться на кораблях, самолетах, а также ИСЗ).

Поскольку команды управления и результаты измерений должны передаваться на большие расстояния в линиях связи применяются различные методы повышения помехоустойчивости. Эти методы можно разбить на 3 группы.

Первую группу составляют меры эксплуатационного характера, направленные на повышение качественных показателей каналов связи, используемых для передачи данных. К ним относятся: улучшение характеристик каналов; уменьшение количества возникающих в каналах импульсных помех, предотвращение прерываний и т.п.

Ко второй группе относятся меры, направленные на увеличение помехоустойчивости самих элементарных сигналов передачи данных, например такие, как:

- увеличение отношения сигнал/помеха за счет увеличения амплитуды сигнала;

- применение всевозможных методов накопления и разнесения сигналов;

- применение более помехоустойчивого вида модуляции и более совершенных методов демодуляции и регистрации элементарных сигналов (интегральный прием, синхронное детектирование, применение шумоподобных сигналов (ШПС) и т.п.)

Некоторые из этих методов обеспечивают увеличение помехоустойчивости ко всему комплексу помех (например, накопление, переход к другому виду модуляции, другие – к определенным видам помех. Например, ШПС и перемежение обеспечивают защиту от пакетов ошибок, но не повышают помехоустойчивость к независимым ошибкам.

К третьей группе мер по повышению достоверности цифровой информации, передаваемой по каналам связи, относятся различные методы, использующие информационную избыточность символов кода, отображающие передаваемые данные на входе и выходе дискретного канала (помехоустойчивое кодирование, переспрос и пр.). Реализация этих методов требует применение специальной аппаратуры:

- устройства защиты от ошибок (УЗО) – преобразования символов кода на входе и выходе канала связи.

По способу ввода избыточности выделяют:

- УЗО с постоянной избыточностью, в которых используются корректирующие коды, обнаруживающие и исправляющие ошибки;

- УЗО с переменной избыточностью, в которых используется обратная связь по встречному каналу;

- комбинированные УЗО, использующие обратную связь в сочетании с кодовыми и косвенными методами обнаружения и исправления ошибок.

В УЗО с переменной избыточностью определения ошибок производится либо путём применения корректирующих кодов, либо путём сравнения переданных и принятых по обратному каналу символов кода. Исправление ошибок происходит при повторной передаче искажённого или сомнительного кодового слова. В комбинированных УЗО часть ошибок или стираний исправляется за счёт постоянной избыточности кода, а другая часть только обнаруживается и исправляется повторной передачей.

Исправлением ошибок в УЗО с постоянной избыточностью можно достичь практически любых требуемых значений достоверности приёма, однако при этом корректирующий код должен иметь очень длинные кодовые блоки, что связанно с пакетированием ошибок с реальных каналах.

Наиболее широкое применение в системах передачи данных получили УЗО с обратной связью и комбинированные УЗО. Избыточность в прямом канале сравнительно невелика, так как. используется только для обнаружения ошибок или исправления ошибок малой кратности. При обнаружении ошибок избыточность увеличивается за счёт повторной передачи искажённых блоков данных.

На практике для обнаружения ошибок широкое применение нашли циклические коды, на которые разработаны как международные, так и отечественные стандарты. Наибольшее распространения получили циклический код с порождающим полиномом Этот код является циклическим вариантом расширенного когда Хемминга (добавлена общая проверка на чётность), его длина а кодовое расстояние d =4. Известно, что обнаруживающая способность кода растёт при увеличении кодового расстояния. Поэтому на каналах среднего и низкого качества следует применять коды с d >4, что при примерном сокращении максимальной длины кодовой комбинации, естественно, приводит к увеличению числа проверочных символов. Так разработанный стандарт рекомендует следующий порождающий полином , который задаёт циклический код БЧХ с минимальным кодовым расстоянием 6 и длиной не более бит. Широкое использование для обнаружения ошибок циклических кодов (Хемминга, БЧХ) во многом обусловлено простотой их реализации.

Всё сказанное выше касалось в основном использования кодов для обнаружения ошибок. Известно, что существенно улучшить характеристики метода передачи с переспросом можно введение в него исправления ошибок. Код в данном случае используется в режиме частичного исправления ошибок, а переспрос осуществляется при невозможности декодирования принятой последовательности.

В тех случаях, когда по тем или иным причинам нельзя создать канал обратной связи или задержка на переспрос недопустима, используется односторонние системы передачи данных с исправлением ошибок избыточными кодами. Такая система, в принципе, может обеспечить любое требуемое значение достоверности, однако при этом корректирующий код должен иметь очень длинные кодовые блоки. Это обстоятельство обусловлено тем, что в реальных каналах ошибки пакетируются, причем длины пакетов могут достигать больших значений. Чтобы исправить такие пакеты ошибок необходимо иметь блоки существенно большей длины.

В настоящее время известно большое количество кодов, исправляющих пакеты ошибок. Типичный подход состоит в решении этой задачи методами, которые позволяют исправить длинные пакеты ошибок за счёт не обнаружения некоторых комбинаций случайных ошибок. При этом применяются циклические коды, такие как коды Файра и декодеры типа декодера Меггита. Вместе с подходящим перемежением используются блоковые или свёрточные коды, исправляющие случайные ошибки. Кроме того, существуют методы, которые позволяют исправлять длинные пакеты в предложении, что между двумя пакетами имеется достаточно длинная зона свободная от ошибок.

В состав КИП обычно входят несколько командно – измерительных станций: приемных и передающих. Это могут быть мощные РЛС, предназначенные для обнаружения и наблюдения за “молчащими” ИСЗ. В зависимости от используемого частотного диапазона КИП могут иметь параболические и спиральные антенны, а также антенные системы, образующие синфазную антенную решетку для формирования необходимой ДНА.

Структурная схема типового КИП в составе одной передающей и нескольких приёмных станций показана на рисунке 4.7.

Принятое каждой антенной (А) высокочастотное колебание после усиления в приёмнике (ПР) поступает в аппаратуру разделения каналов (АРК), в которой разделяются сигналы троекратных измерений (РСТИ), радиотелеметрических измерений (РТИ), телевидения (СТВ) и радиотелефонной связи (СТФ). После обработки этих сигналов, содержащаяся в них информация поступает либо на вычислительный комплекс (ВМ), либо непосредственно на аппаратуру отображения и регистрации (АОРИ), откуда она транслируется на пункт управления (ПУ).

На ПУ формируются команды управления движением ИСЗ, которые через программно – временное устройство (ПВУ) и аппаратуру разделения каналов (АРК) передаются на соответствующий ИСЗ в моменты его радиовидимости с данного КИП (возможна передача и на другие КИП, в зоне видимости которых находятся ИСЗ).

 

Рисунок 4.7 - Структурная схема типового КИП

Кроме того, данные в ЦВМ и АОРИ передаётся по линии передачи данных (ЛПД), на координатно-вычислительный центр ССУ и К. Для привязки работы КИП к системе единого времени в его состав входит местный пункт этой системы (МП), специальное приёмное устройство которого принимает сигналы точного времени.

Структурная схема бортовой аппаратуры ИСЗ показана на рисунок 4.8.

 

Рисунок 4.8 - Структурная схема бортовой аппаратуры ИСЗ

Бортовая аппаратура ИСЗ содержит приёмо-передающие устройство (П и ПР) и антенное устройство (АУ) с антенным переключателем (АП). АУ может состоять из нескольких направленных и ненаправленных антенн.

Важнейшим элементом аппаратуры ИСЗ является бортовая ЭВМ, в которую поступают как сигналы с аппаратуры разделения каналов (АРК) системы передачи команд (СПК), так и от всех датчиков системы телеметрических изменений (РТИ). В бортовой ЭВМ формируются команды для системы траекторных измерений (РСТИ), системы РТИ и системы радиоуправления (СРУ). Бортовые радиомаяки входят в состав системы траекторных измерений (РСТИ), сигналы которой через бортовую аппаратуру разделения каналов (БРК) поступает на бортовые передатчики (П).

Временная шкала ИСЗ и всех наземных КИП согласуется с помощью бортового эталона времени (БЭВ), который периодически сверяется с наземной системой единого времени.

На этапе коррекции орбиты функции РСТИ зависят от принятого метода управления ИСЗ. При корректирующем методе рассчитываются новые параметры орбиты, а затем расчетный момент времени включают бортовые корректирующие двигатели, при следящем методе управления результаты траекторных измерений немедленно используются для расчёта текущих отклонений фактических координат ИСЗ и его скорости (возможно и ориентации) от требуемых и производятся коррекция рассчитанных параметров в течении всего манёвра. Следящие управление используется там, где требуется высокая точность маневрирования.

В траекторных измерениях используется те же методы измерения наклонной дальности, радиальной скорости и угловых координат, что и в радионавигационных системах (раздел 2) или системах управления движение (раздел 3).

Основная особенность бортовой аппаратуры ИСЗ – совмещение радиотехнических систем в целях снижения её массы, уменьшения габаритов, повышение надёжности и упрощения. Совмещаются системы траекторных измерений с телевизионной и телеметрической системами, системы радиоуправления с системами связи и пр. При этом накладывается дополнительные ограничения на выбор методов модуляции и кодирования в каналах различных систем, позволяющие разделить соответствующие потоки информации.

Рассмотрим структуру современных бортовых систем радиотелеметрических и траекторных измерений и особенности их работы в совмещенных радиолиниях.

Структурная схема бортовой аппаратуры (РТИ) показана на рисунке 4.9.

РТИ представляет собой многоканальную информационно-измерительную систему, в которую входят большое число источников первичной информаций (ИЛИ) и соответствующее число датчиков – преобразователей (Д). В качестве таких датчиков используется различные преобразователи неэлектрических величин в электрические (в форме, удобной для обработки и хранения): например, параметрические датчики, к которым относятся резистивные, емкостные, магнитно-упругие, электростатические и др. Из резистивных преобразователей обычно используются потенциометрические, тензометрические и терморезисторные. С помощью таких датчиков можно измерять линейные и угловые перемещения, упругую деформацию различных элементов конструкции ИСЗ, температуру и т.д.

Рисунок 4.9- Структурная схема бортовой аппаратуры РТИ

Применение аналого-цифровых преобразователей (АЦП) позволяет сразу получить измеренную информацию в цифровом виде и направить в ЭВМ или запоминающие устройство (ЗУ). Для защиты информации от внутренних помех и сбоев в УПИ (устройство первичной обработки информации) производиться помехоустойчивое кодирование и вводятся колибрационные сигналы (ИКС) и метки времени от БЭВ для идентификации сигнала каждого датчика.

Для обмена информацией между элементами системы РТИ используется единая шина данных, что обеспечивает большую гибкость управления внутри системы и совмещенных систем. В составе РТИ используется также бортовое устройство сопряжения (БУС), обеспечивающее сопряжение всех элементов РТИ по форматам данных, скости передачи порядку подключения и прочее. БУС работает совместно с АРК, формирующей цифровой сигнал для передатчика (П).

Внутренний комплекс управления, структура которого показаны на рисунок 4.10, также использует общую шину данных, ЭВМ, ЗУ и БЭВ.

 

Рисунок 4.10 - Внутренний комплекс управления

Бортовой комплекс управления (БКУ) составляет часть автоматизированной системы управления ИСЗ. В соответствии с программой ЭВМ БКУ по командам с Земли управляет перемещением ИСЗ по орбите, переключает режимы работы бортовой аппаратуры, заменяет отказавшие блоки и т.п. В автономном режиме БКУ контролирует ориентацию ИСЗ и по сигналам датчиков ориентации (ДО) стабилизирует положение ИСЗ в пространстве.

Принятый сигнал усиливается в приемнике (Пр), после демодуляции групповой сигнал поступает на АКР, в котором выделяются сигналы: системы управления блоками аппаратуры (СУБ), системы разделения и передачи команд управления средствами изменения положения ИСЗ (АРК СПК). Каждой команде присваивается адрес, величина и время исполнения; адрес указывает объект управления: СП – средства перемещения ИСЗ; СК – средства коррекции ориентации ИСЗ и т.п.

Наиболее важным для ИСЗ являются команды на изменение его орбиты; ориентации относительно Земли или Солнца и его стабилизации относительно этих направлений. Точность ориентации определяется назначением ИСЗ. Для ИСЗ с широкой ДНА допустима погрешность 5 ÷ 7, с узкой ДНА – 1 ÷ 3 градуса; при этом потенциальная точность средств ориентации может быть очень высока (до долей угловых секунд), например, для межпланетных станций.

Высокое качество передачи командной информации достигается помехоустойчивым кодированием и обратной связью: прием каждой команды подтверждается по обратному каналу ИСЗ – КИП.

В радиоканале КИП – ИСЗ (Земля – ИСЗ) передача командной информации совмещается с сигналами управления бортовой аппаратуры и сигналами запроса телеметрической информации; в радиоканале ИСЗ – Земля совмещаются: информационный канал, по которому идет передача телеметрической и коммерческой информации, канал обратной связи и обратный измерительный канал. Для синхронизации сигналов в совмещенных радиосистемах по одному из радиоканалов передаются специальные синхропоследовательности, вид которых зависит от применяемого способа разделения каналов.

Для разделения каналов может использоваться АКР с временным разделением (ВКР), частотным разделением (ЧКР), кодовым разделением (КРК) и комбинированным разделением каналов.

При КРК каждому каналу отводится временной интервал, как это имеет место при ВРК, однако сигналы таких каналов передаются в любой последовательности в выделенной для них полосе частот, благодаря тому, что каждый блок данных содержит информационную и адресную составляющие. Системы КРК имеют более высокую помехоустойчивость, но их пропускная способность меньше, чем при ВРК или ЧРК.

Учитывая многофункциональность систем ССУ и К и структурную неоднородность передаваемых сигналов, в радиоканалах ИСЗ – Земля и обратно используются сложные виды модуляции ШИМ – ЧМ, КИМ – ЧМ – ФМ, ИМ – ФМ – ФМ (при временном разделении каналов – ВРК) и АМ – ЧМ, ЧМ – ФМ, ЧМ – АМ (при частотном разделении каналов – ЧРК).

Поскольку каналы системы управления и контроля совмещаются с коммерческими каналами спутниковой системы связи или с каналами научной информации спутниковых систем специального назначения, в качестве несущих в радиоканалах используется тот же диапазон частот: от сотен МГц до десятков ГГц.

 

 







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.