Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Определение СПД. Классификация по территориальному признаку. Основные характеристики.





Вопрос.

Определение СПД. Классификация по территориальному признаку. Основные характеристики.

Сеть передачи данных — совокупность оконечных устройств (терминалов) связи, объединённых каналами передачи данных и коммутирующими устройствами (узлами сети), обеспечивающими обмен сообщениями между всеми оконечными устройствами.

Существуют следующие виды сетей передачи данных:

  • Телефонные сети — сети, в которых оконечными устройствами являются простые преобразователи сигнала между электрическим и видимым/слышимым.
  • Компьютерные сети — сети, оконечными устройствами которых являются компьютеры.

 

Классификация сетей передачи данных по территориальному признаку

К локальным сетям - Local Area Networks (LAN) - относят сети компьютеров, сосредоточенные на небольшой территории (обычно в радиусе не более 1-2 км). В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую одной организации. Из-за коротких расстояний в локальных сетях имеется возможность использования относительно дорогих высококачественных линий связи, которые позволяют, применяя простые методы передачи данных, достигать высоких скоростей обмена данными порядка 100 Мбит/с. В связи с этим услуги, предоставляемые локальными сетями, отличаются широким разнообразием и обычно предусматривают реализацию в режиме on-line.

Глобальные сети - Wide Area Networks (WAN) - объединяют территориально рассредоточенные компьютеры, которые могут находиться в различных городах и странах. Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, в глобальных сетях часто используются уже существующие линии связи, изначально предназначенные совсем для других целей. Например, многие глобальные сети строятся на основе телефонных и телеграфных каналов общего назначения. Из-за низких скоростей таких линий связи в глобальных сетях (десятки килобит в секунду) набор предоставляемых услуг обычно ограничивается передачей файлов, преимущественно не в оперативном, а в фоновом режиме, с использованием электронной почты. Для устойчивой передачи дискретных данных по некачественным линиям связи применяются методы и оборудование, существенно отличающиеся от методов и оборудования, характерных для локальных сетей. Как правило, здесь применяются сложные процедуры контроля и восстановления данных, так как наиболее типичный режим передачи данных по территориальному каналу связи связан со значительными искажениями сигналов.

Городские сети (или сети мегаполисов) - Metropolitan Area Networks (MAN) - являются менее распространенным типом сетей. Эти сети появились сравнительно недавно. Они предназначены для обслуживания территории крупного города - мегаполиса. В то время как локальные сети наилучшим образом подходят для разделения ресурсов на коротких расстояниях и широковещательных передач, а глобальные сети обеспечивают работу на больших расстояниях, но с ограниченной скоростью и небогатым набором услуг, сети мегаполисов занимают некоторое промежуточное положение. Они используют цифровые магистральные линии связи, часто оптоволоконные, со скоростями от 45 Мбит/с, и предназначены для связи локальных сетей в масштабах города и соединения локальных сетей с глобальными

Вопрос.

Вопрос.

Методы коммутации информации. Сравнительный анализ.

Методы коммутации

В глобальных сетях существует три принципиально различные схемы коммутации:

Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.

 

Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера. Сообщениями называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.

 

Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы online. При существенных задержках с запоминанием информации в промежуточных узлах имеем режим offline.


Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения.

В глобальных сетях для передачи информации применяются следующие виды коммутации:

 коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;

 коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);

 коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации)

Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей.

 

При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата. Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения. К достоинствам можно отнести - уменьшение стоимости передачи данных. Недостатком данного способа является низкая скорость передачи информации, невозможность ведения диалога между пользователями.


Пакетная коммутация подразумевает обмен небольшими пакетами (часть сообщения) фиксированной структуры, которые не дают возможности образования очередей в узлах коммутации. Достоинства: быстрое соединение, надежность, эффективность использования сети.

Сравнение способов коммутации

Вопрос.

Коммутация каналов

При коммутации каналов коммутационная сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков. Условием того, что несколько физических каналов при последовательном соединении образуют единый физический канал, является равенство скоростей передачи данных в каждом из составляющих физических каналов. Равенство скоростей означает, что коммутаторы такой сети не должны буферизовать передаваемые данные.

В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. И только после этого можно начинать передавать данные.

 

 

Рис. 2. Установление составного канала

Техника коммутации каналов имеет свои достоинства и недостатки.

Вопрос.

Коммутация пакетов

Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных — запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 3). Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения.

Рис. 3. Разбиение сообщения на пакеты

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 3). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.
Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

· время на передачу заголовков;

· задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

· время буферизации пакета;

· время коммутации, которое складывается из:

o времени ожидания пакета в очереди (переменная величина);

o времени перемещения пакета в выходной порт.

Вопрос.

Асинхронная передача данных

При асинхронной передаче каждый символ передаётся отдельной посылкой. Стартовые биты предупреждают о начале передачи. Затем передаётся символ. Для определения достоверности передачи используется бит чётности (бит чётности равен 1, если количество единиц в символе нечётно, и равен 0 в противном случае). Последний бит сигнализирует об окончании передачи.

Преимущества:

1) Несложная отработанная система;

2) Недорогое интерфейсное оборудование.

Недостатки:

1) Третья часть пропускной способности теряется на передачу служебных битов;

2) Невысокая скорость передачи данных по сравнению с синхронной;

3) При множественной ошибке с помощью бита чётности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени, и не требуется высокая скорость передачи данных.

Вопрос.

Синхронная передача данных.

При использовании синхронного метода данные передаются блоками. Для синхронизации работы приёмника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. Код обнаружения ошибки вычисляется по содержимому поля данных и позволяет однозначно определить достоверность принятой информации.

Преимущества:

1) Высокая эффективность передачи данных;

2) Высокая скорость передачи данных;

3) Надёжный встроенный механизм обнаружения ошибок.

Недостатки:

1) Интерфейсное оборудование более сложное и дорогое.

 

Вопрос.

Понятие «открытая система»

Модель OSI, как это следует из ее названия (Open System Interconnection), описывает взаимосвязи открытых систем. Что же такое открытая система?

В широком смысле открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик. Понятно, что не всякая спецификация является стандартом. В свою очередь, под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными сторонами.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программно-аппаратные комплексы из продуктов разных производителей.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, кроме всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии. Еще одним примером частичной открытости является применение в достаточно закрытой операционной системе Novell NetWare открытого интерфейса Open Driver Interface (ODI) для включения в систему драйверов сетевых адаптеров независимых производителей. Чем больше открытых спецификаций использовано при разработке системы, тем более открытой она является.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в вычислительную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами с использованием стандартных правил, определяющих формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, то это дает следующие преимущества:

· возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

· возможность безболезненной замены отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

· возможность легкого сопряжения одной сети с другой;

· простота освоения и обслуживания сети.

Ярким примером открытой системы является международная сеть Internet. Эта сеть развивалась в полном соответствии с требованиями, предъявляемыми к открытым системам. В разработке ее стандартов принимали участие тысячи специалистов-пользователей этой сети из различных университетов, научных организаций и фирм-производителей вычислительной аппаратуры и программного обеспечения, работающих в разных странах. Само название стандартов, определяющих работу сети Internet - Request For Comments (RFC), что можно перевести как «запрос на комментарии», - показывает гласный и открытый характер принимаемых стандартов. В результате сеть Internet сумела объединить в себе самое разнообразное оборудование и программное обеспечение огромного числа сетей, разбросанных по всему миру.

Вопрос 11.

Вопрос 12.

Сервисные примитивы.

Сервисные примитивы – это концептуальные понятия, описывающие последовательность событий при доступе к сервису уровня. Один и тот же сервис может быть описан разным набором сервисных примитивов.

Базовых сервисных примитивов всего 4 (в протоколах с установлением соединения и подтверждения):

Реквест (req) - запрос

Индикейшн (ind) – информирует

Респонд (res) – ответ нижестоящего

Конфирмешн (conf) –ответ вышестоящего.

Вопрос 13.

Задача каждого уровня - предоставление услуг вышележащему уровню, «маскируя» детали реализации этих услуг. При этом каждый уровень на одном компьютере работает так, будто он напрямую связан с таким же уровнем на другом компьютере. Эта логическая, или виртуальная, связь между одинаковыми уровнями показана на рисунке ниже. Однако в действительности связь осуществляется между смежными уровнями одного компьютера — программное обеспечение, работающее на каждом уровне, реализует определенные сетевые функции в соответствии с набором протоколов.

         
         
         
         
         
         
         
         

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) — это единица информации, передаваемая между устройствами сети как единое целое. Пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется некоторая информация, форматирующая или адресная, которая необходима для успешной передачи данных по сети. На принимающей стороне пакет проходит через все уровни в обратном порядке. Программное обеспечение на каждом уровне читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся адресная информация будет удалена и данные примут свой первоначальный вид. Таким образом, за исключением самого нижнего уровня сетевой модели, никакой иной уровень не может непосредственно послать информацию соответствующему уровню другого компьютера. Информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по сетевому кабелю на компьютер-получатель и опять проходит сквозь все слои, пока не достигнет того же уровня, с которого она была послана на компьютере-отправителе. Например, если Сетевой уровень передает информацию с компьютера А, она спускается через Канальный и Физический уровни в сетевой кабель, далее по нему попадает в компьютер В, где поднимается через Физический и Канальный уровни и достигает Сетевого уровня.

В клиент-серверной среде примером информации, переданной Сетевым уровнем компьютера А Сетевому уровню компьютера В, мог бы служить адрес и, очевидно, информация контроля ошибок, добавленные к пакету.

Вопрос 14.

Физический уровень


Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта.

Физический уровень:

  • передача битов по физическим каналам;
  • формирование электрических сигналов;
  • кодирование информации;
  • синхронизация;
  • модуляция.

Реализуется аппаратно.


Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.


Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

Билет 15.

Канальный уровень


На физическом уровне просто пересылаются биты. При этом не учитывается, что в тех сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другая задача канального уровня — реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay.

Функции канального уровня

Надежная доставка пакета:

1. Между двумя соседними станциями в сети с произвольной топологией.

2. Между любыми станциями в сети с типовой топологией:

o проверка доступности разделяемой среды;

o выделение кадров из потока данных, поступающих по сети;

o формирование кадров при отправке данных;

o подсчет и проверка контрольной суммы.

Реализуются программно-аппаратно.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся "общая шина", "кольцо" и "звезда", а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.


В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.


В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка-точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP-B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети X.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий ATM и frame relay.


В целом канальный уровень представляет собой весьма мощный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами, и тогда поверх них могут работать непосредственно протоколы прикладного уровня или приложения, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что применение такой реализации будет ограниченным — она не подходит для составных сетей разных технологий, например Ethernet и X.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевидные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализация SNMP над канальным уровнем будет вполне работоспособна.


Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.

 

 

Вопрос 16.

Сетевой уровень


Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Рассмотрим их на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, например топологией иерархической звезды. Это жесткое ограничение, которое не позволяет строить сети с развитой структурой, например сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять протоколы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы, с одной стороны, сохранить простоту процедур передачи данных для типовых топологий, а с другой — допустить использование произвольных топологий, вводится дополнительный сетевой уровень.

На сетевом уровне сам термин "сеть" наделяют специфическим значением. В данном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор — это устройство, которое собирает информацию о топологии межсетевых соединений и пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями, или хопов (от слова hop — прыжок), каждый раз выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, через которые проходит пакет.

Сетевой уровень — доставка пакета:

· между любыми двумя узлами сети с произвольной топологией;

· между любыми двумя сетями в составной сети;

· сеть — совокупность компьютеров, использующих для обмена данными единую сетевую технологию;

· маршрут — последовательность прохождения пакетом маршрутизаторов в составной сети.

На рис. 8 показаны четыре сети, связанные тремя маршрутизаторами. Между узлами А и В данной сети пролегает два маршрута: первый — через маршрутизаторы 1 и 3, а второй — через маршрутизаторы 1, 2 и 3.

Рис. 8. Пример составной сети.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь — не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может с течением времени изменяться. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, таким как надежность передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сообщений по связям с нестандартной структурой, которые мы рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень также решает задачи согласования разных технологий, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packet). При организации доставки пакетов на сетевом уровне используется понятие "номер сети". В этом случае адрес получателя состоит из старшей части — номера сети и младшей — номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину "сеть" на сетевом уровне можно дать и другое, более формальное, определение: сеть — это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

На сетевом уровне определяется два вида протоколов. Первый вид — сетевые протоколы (routed protocols) — реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршрутизации (routing protocols). С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Вопрос 17.

Транспортный уровень.

 

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного — сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое, и вероятность наличия ошибок, не обнаруженных протоколами более низких уровней, невелика, стоит воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок, — с помощью предварительного установления логического соединения, отслеживания доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Транспортный уровень — обеспечение доставки информации с требуемым качеством между любыми узлами сети:

· разбивка сообщения сеансово







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.