Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Закон Ома для участка и полной замкнутой цепи





В 1826 г. немецкий ученый Георг Ом экспериментально установил прямую пропорциональную зависимость между силой тока I в проводнике и напряжением U на его концах: , где G - электрическая проводимость проводника. Величина, обратная проводимости называется электрическим сопротивле­ни­ем проводника R. Таким образом, закон Ома для участка цепи, не содержа­щего источника э.д.с., имеет вид . Учитывая, что в общем случае участок цепи может содержать и э.д.с., закон Ома следует представить в виде .

Сопротивление проводника зависит от его размеров, формы и материала, из которого он изготовлен. Для однородного линейного проводника , где l - длина, S - площадь поперечного сечения проводника, r - удельное электриче­с­кое сопротивление, зависящее от материала, из которого изготовлен проводник. Единица сопротивления 1 Ом - это сопротивление такого проводника, в котором при напряжении 1В течет ток в 1А.

Если цепь замкнута, то , , где R - общее сопротивление всей цепи, включая сопротивление источника э.д.с. Тогда закон Ома для замкнутой цепи следует записать , где e - алгебраическая сумма всех э.д.с., имеющихся в этой цепи.

Принято называть сопротивление источника тока r - внутренним, а сопротив­ление всей остальной цепи R - внешним. Окончательный вид формулы закона Ома для замкнутой цепи . В системе единиц СИ напряжение и э.д.с. изме­ряются в Вольтах (В), сопротив­ление - в Омах (Ом), удельное электрическое сопротивление - в Ом-метрах (Ом×м), электрическая проводимость в Сименсах (См).

 

Рис.2.1. Отрезок проводни­ка.

Закон Ома можно записать и для плотности тока. Рассмотрим участок электрической длиной dl и поперечным сечением dS (рис.2.1). Сила тока на этом участке , сопротивление , падение на­пряжения , где Е - напряженность электрического поля в проводнике. Под­ставив эти параметры в закон Ома для участка цепи, получим . Отсюда или , где - удельная электрическая проводи­мость проводникаили удельная электропроводность. В векторном виде имеем (единицей измерения g в системе СИ является сименс на метр (См/м)). Полученное выражение есть закон Ома в дифференциальной форме : плот­ность тока в любой точке внутри проводника прямо пропорциональна напря­женности поля в этой точке.



1.14 Сопротивление проводника. Явление сверхпроводимости.

Способность вещества проводить ток характеризуется его удельной проводи­мостьюg, либо удельным сопротивлением r. Их величина определяется химичес­кой природой проводника и условиями, в частности температурой, при которой он находится. Для большинства металлов r растет с температурой приблизительно по линейному закону: , - удельное сопротивление при 0°С, t - температура по шкале Цельсия, a - темпе­ра­турный коэффициент сопротивления близкий к 1/273 К-1 при не очень низких темпе­ратурах. Так как R~r, то , где - сопротивление при 0°С. Преобра­зовав две последние формулы, можно записать и , где Т – температура по Кельвину. На основе температурной зависимости сопротивления метал­лов созда­ны термометры сопротивления - термисторы, позволяющие определять температуру с точно­стью до 0.003 К.

При низких температурах нарушается линейность зависимости сопротивления металлов от температуры и при температуре 0 К наблюдается остаточное сопротивление Rост. Величина Rост зави­сит от чистоты материала и наличия в нем механических напряжений. Лишь у иде­ально чистого металла с идеально правильной кристаллической решеткой Rост ®0 при Т®0 (пунктирная часть кривой).

Кроме этого, в 1911 г. Г.Каммерлинг-Оннес обнару­жил, что при Тк = 4.1К сопротивление ртути скачкообразно уменьшается практически до нуля. Эта температура была названа критической, а наблюдаемое яв­ление - сверхпроводимостью. Впо­следствии этот эффект был обнаружен у целого ряда дру­гих металлов (Ti, Al, Pb, Zn, V и др.) и их спла­вов в интервале температур 0.14-20 К. Вещества в сверхпроводящем состоянии обладают необычными свойствами. Однажды возбужденный в них ток может длительно существовать без источника тока. Переход в сверхпроводящее состояние сопровождается скачкообразным изме­нением теплоемкости, теплопроводности, маг­нитных свойств вещества. Выясни­лось, что внешнее магнитное поле не проникает в толщи­ну сверхпроводника, т.е. магнитная индукция внутри него всегда равна нулю. Явление сверхпроводимости объясняется на основе квантовой теории. К настоящему времени это явление обнаружено также у ряда композиционных веществ (например, соединений металлов и диэлектриков), при этом критическая температура доходит до температуры сжижения азота, что позволяет достаточно экономично использовать явление высокотемпературной сверхпроводимости в инженерной практике. Данное явление позволяет создавать: системы передачи без потерь электрического тока по проводам из таких веществ, системы для накопления электроэнергии, мощные электромагниты, магнитные подвески для различных целей.

1.15 Работа и мощность тока, закон Джоуля-Ленца.

Определим работу, совершаемую постоянным током в проводнике, имеющем сопротивление R и находящемся под напряжением . Так как ток пред­ставляет собой перемещение заряда q под действием поля, то работу тока можно оп­ределить по формуле . Учитывая формулу и закон Ома, получим , или , или , где t - время протекания тока. Поделив обе части равенства на t, получим выраже­ния для мощности постоянного тока N

, , . Работа тока в системе единиц СИ измеряется в доулях (Дж), а мощность - в ваттах (Вт). На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1Вт×ч - работа тока мощностью 1Вт в течение одного часа. 1Вт×ч=3.6×103 Дж.

Опыт показывает, что ток всегда вызывает некоторое нагревание проводника. Нагревание обусловлено тем, что кинетическая энергия движущихся по проводнику электронов (т.е. энергия тока) при каждом их столкновении с ионами металличе­ской решетки переходит в теплоту Q. Если ток идет по неподвижному металличе­скому проводнику, то вся работа тока расходуется на его нагревание и, следуя за­кону сох­ранения энергии, можно записать . Данные соотношения выражают закон Джоуля-Ленца. Впервые этот закон был установлен опытным путем Д.Джоулем в 1843 г. и независимо от него Э.Ленцем в 1844 г. Применение теплового действия тока в технике началось с открытия в 1873 г. русским инженером А.Ладыгиным лампы накаливания.

На тепловом действии тока основан целый ряд электрических приборов и ус­та­новок: тепловые электроизмерительные приборы, электропечи, электросварочная аппаратура, бытовые электронагревательные приборы - чайники, кипятильники, утюги. В пищевой промышленности широко применяется метод электроконтактного нагрева, заключающийся в том, что электрический ток, проходя через продукт, об­ла­дающий определенным сопротивлением, вызывает его равномерное нагревание. На­пример, для производства колбасных изделий через дозатор фарш поступает в формы, торцевые стенки которых служат электродами. При такой обработке обес­пе­чивается равномерность нагрева по всему объему продукта, возможность под­держа­ния определенного температурного режима, наивысшая биологическая цен­ность из­делия, наименьшие длительность процесса и расход энергии.

Определим удельную тепловую мощность токаw, т.е. количество теплоты, вы­деляющееся в единице объема за единицу времени. Выделим в проводнике элемен­тарный цилиндрический объем dV с поперечным сечением dS и длиной dl параллель­ной направлению тока, и сопротивлением , . По закону Джоуля-Ленца, за время dt в этом объеме выделится теплота . Тогда и, используя закон Ома для плотности тока и соотно­шение , получим . Эти соотношения выражают закон Джоуля-Ленца в дифференциальной форме.

 

1.16. Правило Кирхгофа для разветвленных электрических цепей.

До сих пор нами рассматривались простейшие электрические цепи, состоя­щие из одного замкнутого неразветвленного контура. На всех его участках силы тока оди­наковы. Расчет I, R, e в такой цепи выполняется с помощью законов Ома.

Рис.2.2.Разветвленная электрическая цепь.

Более сложной является разветвленная электри­ческая цепь, состоящая из нескольких замкнутых кон­ту­ров, имеющих общие участки. В каждом контуре мо­жет быть несколько источников тока. Силы тока на от­дельных участках замкнутого контура могут быть раз­личными по величине и направлению (рис.2.2). В 1847 г. Г.Кирхгоф сформулировал два правила, значительно упрощающих расчет разветвленных цепей.

Первое правило Кирхгофа: алгебраическая сумма сил токов в узле равна нулю: . Узел - точка цепи, в которой сходятся не менее трех про­водников. В электрической цепи на рис.2.2 имеются два узла А и В. Ток, входящий в узел, считается положительным, выходящий - отрицательным. Например, для узла А первое правило Кирх­гофа следует записать .

Первое правило выражает закон сохранения электрического заряда, так как ни в одной точке цепи они не могут возникать или исчезать.

Второе правило Кирхгофа относится к любому замкнутому контуру, выде­ленному в разветвленной цепи: алгебраическая сумма произведений токов на со­противления, включая и внутренние, на всех участках замкнутого контура равна алгебраической сумме электродвижущих сил, встречающихся в этом контуре . Контур ‑ это замкнутый участок схемы, по которому можно пройти и вернуться в исходную точку. Второе правило Кирхгофа получается из закона Ома, записанного для всех участков от узла до узла (ветвей) разветвленной схемы. В электрической цепи на рис.2.2 имеются три контура: AMNBA, CABDC, CMNDC. При этом, токи Ii в ветвях контура, совпадающие с произвольно вы­бран­ным направлением обхода контура, считаются положительными, а направлен­ные на­встречу обхода - отрицательными. Э.д.с., проходимые от «+» к «-» считаются поло­жительными и наоборот. В рассматриваемой элек­трической цепи (рис.2.2) выберем обход контуров по часовой стрелке и запишем для них уравнения по II правилу Кирхгофа: для AMNBА ; для CABDС ; для CMNDС . В данном примере внутренними сопротивлениями источников тока пренебрегаем. Первое и второе правила Кирхгофа по­зволяют составить систему линейных алгебраичес­ких уравнений, которые связывают пара­метры (I, R, ) и позволяют, зная одни, найти другие.

Простые электрические цепи имеют очень большое практическое применение. В повседневной жизни полезно знать, как под­ключить динамики или проигрыватель к сте­реосистеме, как подсоединить сигнализацию для охраны или автомобильный кас­сетный проигрыватель, как зарядить аккумуляторы или осветить новогоднюю елку.

Большинство электрических цепей содержит комбинацию последовательно или параллельно подключенных резисторов (резистор - это элемент цепи, обла­дающий только сопротивлением). Полное сопротивление участка цепи оп­ределяется отношением падения на­пряжения на нем к величине силы тока . При последовательном соединении (рис.2.3 а) через все резисторы течет один и тот же ток. При параллельном соединении (рис.2.3 б) полный ток равен сумме токов, те­кущих в отдельных резисторах.

При последовательном соединении падение на­пряже­ния на участке АВ равно , т.е. сумме падений напряжения на трех резисторах. Разделим обе части равенства на I и получим , т.е. . Таким образом, полное сопротивление участка цепи, состоящего из последо­ва­тельно соединенных резисторов, равно их алгебраической сумме .

При параллельном соединении (рис..2.3 б) мы имеем . Разделим обе части равенства на U, где U - падение напряжения на участке цепи АВ, причем , и получим . Из этого равенства следует . Величина обратная полному сопротивлению параллельно соединенных резис­торов равна алгебраической сумме величин их обратных сопротивлений .

В электрическую цепь может быть включено регулируемое (изменяющееся с помощью специального движка), сопротивление, которое называется реостатом. По назначению реостаты делятся на пусковые, служащие для ограничения силы тока во время пуска двигателей, и регулирующие - для регулировки силы тока в цепи (по­степенное снижение освещенности в театральных залах), регулировки скорости вращения электродвигателей и т.д. Реостат может быть использован в качестве так называемого датчика пере­мещения. В автоматических регуляторах уровня жидкос­ти в резервуарах применя­ется поплавково-реостатный датчик. Специальный поплавок крепится к движку реостата. Изменение уровня жидкости сдвигает поплавок, изменя­ет сопротивление реостата, и следовательно, силы тока в цепи, величина которого дает информацию об уровне.

 









Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.