Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







ЧАСТЬ III. ЭЛЕКТРИЧЕСТВО и МАГНЕТИЗМ





УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература Наличие в библиотеке университета
1. Т.И.Трофимова. Курс физики. М.: Высшая школа. М. 2003-2010  
2. Т.И. Трофимова. Сборник задач по курсу физики. М. 2003-2010  
Яворский и Детлаф. Курс физики  
Дополнительная литература  
3. И.В.Савельев. Курс общей физики.Т.I. М.: Наука. 1977-1989  
4. И.В.Савельев. Курс общей физики.Т.II. М.: Наука. 1973-1988  
5. И.В.Савельев. Курс общей физики.Т.III. М: Наука. 1971-1987  

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Электрический ток, сила тока и плотность тока

В электродинамике – разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, – важнейшим понятием является понятие электрического тока.

Электрический ток есть упорядоченное движение электрических зарядов. Электрический ток, возникающий в проводящей среде вследствие того, что в нем создается электрическое поле, называется током проводимости.

Электрический ток может быть обусловлен также движением в пространстве макроскопических заряженных тел (пылинок, капель жидкости) или даже одного заряженного тела. Такой ток называют конвекционным. Примером конвекционного тока может служить ток, который возникает при вращении тела, заряженного с некоторой объемной или поверхностной плотностью.

К электрическому току относят и направленное движение электронов или ионов в вакууме, которое формально не подпадает под определение как тока проводимости (нет проводящей среды), так и конвекционного тока (упорядоченно перемещаются заряженные микро-, а не макрообъекты). Эти токи определяют работу электровакуумных приборов, установок ионной имплантации и ионного легирования и т. д.

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока – заряженных частиц, способных перемещаться упорядочено, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условнопринимают направление движения положительных зарядов. Количественной мерой электрического тока служит сила тока – скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

, (7.1)

где – электрический заряд, проходящий за время через поперечное сечение проводника. Единица силы тока – ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

. (7.2)

Выразим силу и плотность тока через среднюю скорость упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна и каждый носитель имеет элементарный заряд , то за время через поперечное сечение S проводника переносится заряд . Сила тока

 

,

 

а плотность тока

.

 

Плотность тока – вектор,ориентированный по направлению тока, т. е. направление вектора совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока – ампер на метр в квадрате (А/м2).

 

 

Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует эдс.

 

 

Закон Ома

В 1826 г. немецкий физик Г. Ом (1787–1854) экспериментально установил закон, согласно которому, сила тока, проходящего в однородном проводнике, пропорциональна напряжению на концах проводника:

, (7.6)

где R – характеристика проводящей среды, электрическое сопротивление проводника. В СИ сопротивление измеряется в омах (Ом).

Значение сопротивления проводника R зависит от материала, из которого проводник изготовлен, а также его размеров и формы. Для однородного проводника с площадью поперечного сечения S и длиной l имеем

, (7.7)

где удельное электрическое сопротивление проводника.

Закон Джоуля–Ленца

 

 

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время через сечение проводника переносится заряд . Так как ток представляет собой перемещение заряда под действием электрического поля, то работа тока

 

. (7.13)

 

 

Уравнение (7.20) может быть составлено для всех замкнутых контуров, которые можно выделить мысленно в данной разветвленной цепи. Однако независимыми будут только уравнения для тех контуров, которые нельзя получить наложением других контуров один на другой.

При составлении уравнений второго правила Кирхгофа токам и эдс нужно приписывать знаки в соответствии с выбранным направлением обхода. Эдс также нужно приписать знак минус, так как она действует в направлении, противоположном направлению обхода. Направления обхода в каждом из контуров можно выбирать совершенно произвольно и независимо от выбора направлений в других контурах. При этом может случиться, что один и тот же ток либо одна и та же эдс войдет в разные уравнения с различными знаками. Это, однако, не имеет никакого значения, потому что изменение направления обхода вызывает лишь изменение всех знаков в уравнении (7.20) на обратные.

Число независимых уравнений, составленных в соответствии с первым и вторым правилами Кирхгофа, оказывается равным числу различных токов, текущих в разветвленной цепи. Поэтому, если заданы эдс и сопротивления для всех неразветвленных участков, то могут быть вычислены все токи.

 

 

Магнитное поле

Тема 3. Магнитное поле. Закон Био-Савара-Лапласа

Электрический ток создает поле, действующее на магнитную стрелку. Стрелка ориентируется по касательной к окружности, лежащей в плоскости, перпендикуляной к проводнику с током (рис. 9).

Основной характеристикой магнитного поля является вектор индукция . Принято, что вектор индукция магнитного поля направлен в сторону север-ного полюса магнитной стрелки, помещенной в данную точку поля (рис. 9).

По аналогии с электрическим полем, магнитное поле также может быть изображено графически с помощью силовых линий (линий индукции магнитного поля).

Силовая линия – это такая линия, касательная к которой в каждой точке совпадает по направлению с вектором индукции магнитного поля. Силовые линии магнитного поля, в отличие от силовых линий электростатического поля, являются замкнутыми и охватывают проводники с током. Направление силовых линий задается правилом правого винта (правилом буравчика): головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий магнитной индукции (рис. 9).

I
 
N
S

 

 

Рис. 9

Для нескольких источников магнитного поля согласно принципу суперпозиции магнитных полей индукция результирующего магнитного поля равна векторной сумме индукций всех отдельных магнитных полей:

.

Вектор индукции магнитного поля, создаваемого проводником с током , можно определить с помощью закона Био-Савара-Лапласа. При этомнеобходимо учесть то, что закон Био-Савара-Лапласа позволяет найти модуль и направление лишьвектора индукции магнитного поля, создаваемого элементом проводника с током . Поэтому, для определения вектора индукции магнитного поля, создаваемого проводником с током , необходимо первоначально разбить этот проводник на элементы проводника , для каждого элемента с помощью закона Био-Савара-Лапласа найти вектор индукции , а затем, используя принцип суперпозиции магнитных полей, сложить векторно все найденные вектора индукции .

Закон Био-Савара-Лапласа в векторной форме:

I
 
М
Рис. 10
α
,

где – индукция магнитного поля в точке M, заданной радиусом-вектором , проведенным от начала вектора до этой точки;

– векторное произведение векторов и ;

– магнитная постоянная,

– магнитная проницаемость среды.

Направление вектора определяется по правилу правого винта: направление враще­ния головки винта дает направление вектора , если поступательное движение винта совпадает с направлением тока в элементе проводника (рис. 10).

В скалярном виде закон Био-Савара-Лапласа:

, где – угол между векторами и .

Магнитное поле линейного тока. Для нахождения индукции магнитного поля, созданного прямым проводником с током (рис. 11), необходимо разбить весь проводник на элементы , для каждого элемента проводника с током I найти вектор индукции , а затем векторно сложить все найденные .

В произвольной точке М, удаленной от оси проводника на расстояние b (рис. 11), векторы от всех элементов проводника с током I имеют одинаковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов можно заменить сложением их модулей.

I
α
D
а
b
М
С
О
Рис. 11

 

 

По закону Био-Савара-Лапласа модуль вектора магнитной индукции в точке М поля, созданного элементом проводника с током I:

.

В качестве переменной интегрирования выберем угол , выразив через этот угол все остальные величины.

Из рисунка 11 следует, что , а с другой стороны, .

Тогда , а модуль вектора магнитной индукции в точке М:

.

Из прямоугольного треугольника DOM:

, откуда .

Следовательно, индукция dB, создаваемая элементом проводника dl с током I:

.

Теперь можно перейти к интегрированию:

.

Так как угол для прямого тока изменяется в пределах от до , то магнитная индукция поля прямого тока:

.

Следовательно,

.

Магнитное поле в центре кругового проводника с током. Для нахождения индукции магнитного поля в центре кругового проводника с током необходимо разбить этот проводник на элементы , причем все элементы проводника с током создают в центре кругового тока магнитные поля одинакового направления – вдоль нормали к плоскости витка (рис. 12). Поэтому сложение век­торов можно заменить сложением их модулей dB.

По закону Био-Савара-Лапласа модуль вектора :

.

Так как все элементы проводника перпендикулярны соответствующим радиусам-векторам (рис. 12), то sin a = 1 для всех элементов . Расстояния r для всех элементов проводника также одинаковые (r = R).

Тогда выражение для модуля вектора примет вид:

.

Теперь для нахождения модуля вектора можно перейти к интегрированию:

.

Следовательно, индукция магнитного поля B в центре кругового проводника радиусом R с током I:

.

Тема 8. Уравнения Максвелла

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература Наличие в библиотеке университета
1. Т.И.Трофимова. Курс физики. М.: Высшая школа. М. 2003-2010  
2. Т.И. Трофимова. Сборник задач по курсу физики. М. 2003-2010  
Яворский и Детлаф. Курс физики  
Дополнительная литература  
3. И.В.Савельев. Курс общей физики.Т.I. М.: Наука. 1977-1989  
4. И.В.Савельев. Курс общей физики.Т.II. М.: Наука. 1973-1988  
5. И.В.Савельев. Курс общей физики.Т.III. М: Наука. 1971-1987  

ЧАСТЬ III. ЭЛЕКТРИЧЕСТВО и МАГНЕТИЗМ

ЭЛЕКТРОСТАТИКА

Тема 1. Теорема Остроградского-Гаусса для электростатического поля

 

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами.

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики.

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

 

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

 

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

 

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 +... + qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

В системе СИ элементарный заряд e равен:

 

e ≈ 1,6·10–19 Кл.

 

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

 

Точечным называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует.

 

Закон Кулона:сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

,

где (e 0 – электрическая постоянная);

e – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Кулоновская сила направлена по прямой, соединяющей взаимодействующие точечные заряды, соответствует притяжению в случае разноименных зарядов и отталкиванию в случае одноименных зарядов.

Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими.

 

Для обнаружения и опытного исследования электростатического поля можно использовать пробный точечный заряд q 0 . Если этот заряд поместить в какую- либо точкуэлектростатического поля,то на него будетдействовать сила , величина и направление которой определяет силовую характеристику электростатического поля, носящую название напряженности электростатического поля.

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q 0 , помещенный в эту точку поля, то есть:

.

Напряжённость электростатического поля, создаваемого точечным зарядом q в любой точке поля, находящейся на расстоянии r от этого заряда:

.

Электростатическое поле может быть изображено графически с помощью силовых линий.

Силовая линия — это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Рис. 1 Рис. 2

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а), и входя­щие в отрицательный заряд (рис. 2, б).

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая её с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q, создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

 

Поток вектора напряженности электростатического поля через произвольную площадку S характеризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток ФЕ вектора напряженности через данную площадку S: .

 
α
S

S

 

Рис. 3 Рис. 4

Рис. 3
Если же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S:

,

где α – угол между векторами напряженности и нормали к площадке S.

dS
α
S
 
Рис. 5
Для того, чтобы найти поток ФЕ вектора напряженности через произвольную поверхность S, необходиморазбить эту поверхность на элементарные площадки dS (рис. 5),определить элементарный поток Е через каждую элементарную площадку dS по формуле: ,

а затем все эти элементарные потоки Е сложить, что приводит к интегрированию:

,

Рис. 7
где α – угол между векторами напряженности и нормали к данной элементарной площадке dS.

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS, то величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

 

Теорема Остроградского - Гаусса для электростатического поля. Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока ФЕ вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величинойзаряда q, заключенного внутри данной замкнутой поверхности S (рис. 6).

Рис. 6
q
S
Поскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизываютпроизвольную замкнутую поверхность S, охватывающую этот заряд (рис. 6), то величина потока ФЕ вектора напряженности электростатического поля через эту произвольную замкнутую поверхность S будет определяться числом N силовых линий, выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса дляэлектростатического поля.

 

Таккак поток считается положитель­ным, если силовые линии выходят из поверхности S, и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

 

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0:

.

 

В общем случае электрические заряды могут быть распределены внутри объёма, ограниченного замкнутой поверхностью S, с некоторой объемной плотностью (), различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри этой замкнутой поверхности S, охватывающей объем V,равен: .

В таком случае теорема Остроградского - Гаусса приобретает вид:

.

Напряженность электростатического поля зависит от диэлектрических свойств среды. В диэлектрике напряженность поля меньше, чем напряженностьвнешнего электростатического поля в вакууме, в котором находится диэлектрик, в e раз (e – диэлектрическая проницаемость среды), а модуль вектора , переходя через границу диэлектриков, скачко­образно изменяется. Поэтому для характеристики электростатического поля, кроме вектора напряженности , введен вектор электрического смещения , модуль которого не изменяется при переходе из одной диэлектрической среды в другую.

 

Вектор электрического смещения по определению: .

Используя то, что в вакууме , теорема Остроградского-Гаусса для электростатического поля может быть переформулирована следующим образом:

,

то есть поток вектора смещения электростатического поля через произ­вольную замкнутую поверхность S равен алгебраической сумме заключенных внутри этой поверхности зарядов.

В случае, если электрические заряды распределены внутри объёма V, ограни-ченного замкнутой поверхностью S, с некоторой объемной плотностью , теорема Остроградского-Гаусса для электростатическогополяможет быть переформулирована сдедующим образом:

.

 

 

Тема 2. Работа сил электростатического поля. Потенциал

Если в электростатическом поле, создаваемом точечным зарядом q, перемещается другой пробный заряд q 0из точки 1 в точку 2 вдоль произвольной траектории (рис. 7), то при этом совершается работа сил электростатического поля.

Элементарная работа dA силы на элементарном перемещении равна:

.

Из рисунка 7 видно, что .

Тогда ().

Рис. 7
Работа А при перемещении заряда q 0 вдоль траектории от точки 1 до точки 2:

 

,

то есть работа при перемещении заряда из точки 1 в точку 2 в электростатическом поле не зависит от траектории перемещения, а определяется только положениями начальной (1) и конечной (2) точек, то есть электростатическое поле точечного заряда является потенциальным.

 

Работа, совершаемая силами электростатического поля при перемещении заряда q 0из точки 1 в точку 2, выражается следующим образом:

,

где φ1 и φ2потенциалы электростатического поля в точках 1 и 2.

 

Потенциал электростатического поля определяется с точностью до произвольной аддитивной постоянной С, то есть для поля точечного заряда q:

.

Тогда , .

 

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой , совершаемой силами поля, при перемещении пробного точечного поло­жительного заряда q 0из точки 1 в точку 2:

.

Если считать, что при удалении на бесконечность потенци­ал электростатического поля обращается в нуль (φ =0), то потенциал φ1 в данной точке поля можно определить следующим образом:

,

то есть потенциал j в данной точке поля равен работе сил электростатического поля при перемещении точечного поло­жительного единичного заряда из данной точки поляна бесконечность.

Циркуляцией вектора напряженности электростатического поля по произвольному замкнутому контуру L называется интеграл

.

Для того, чтобы найти циркуляцию вектора напряженности по произвольному замкнутому контуру L, необходимо выбрать направление обхода контура, разбить этот контур L на элементы , для каждого элемента рассчитать величину (a – угол между векторами и ), а затем все эти величины сложить, что приводит к искомому интегралу.

Однако для электростатического поля циркуляция вектора напряженности по произвольному замкнутому контуру L может быть легко получена из формулы работы, совершаемой силами электростатического поля при перемещении пробного заряда q 0по произвольному замкнутому контуру L.

 

С одной стороны, эта работа равна:

,

а с учетом того, что эта работа равна:

.

С другой стороны, эта работа может быть определена с помощью формулы:

,

из которой следует, что для произвольного замкнутого контура эта работа равна нулю, так как . Тогда и циркуляция вектора по произвольному замкнутому контуру L тоже равна нулю, то есть:

Прокрутить вверх





Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.