|
Параболический тренд и его свойства
Под названием параболического будем иметь в виду тренд, выраженный параболой II порядка с уравнением
. Параболы III порядка и более высоких порядков редко применимы для выражения тенденции динамики и слишком сложны для получения надежных оценок параметров при ограниченной длине временного ряда. Прямую линию, с точки зрения математики, можно также считать одним из видов парабол - параболой I порядка, которая уже рассмотрена ранее. Значения (смысл, сущность) параметров параболы II порядка таковы: свободный член а— это средний (выравненный) уровень тренда на момент или период, принятый за начало отсчёта времени, т.е. t=0; b— это средний за весь период среднегодовой прирост, который уже не является константой, а изменяется рaвномерно со средним ускорением, равным 2 с, которое и служит константой, главным параметром параболы II порядка. Основные свойства тренда в форме параболы II порядка таковы: 1) неравные, но равномерно возрастающие или равномерно убывающие абсолютные изменения за равные промежутки времени; 2) парабола, рассматриваемая относительно ее математической формы, имеет две ветви: восходящую с увеличением уровней признака и нисходящую с их уменьшением. Но относительно статистики по содержанию изучаемого процесса изменений трендом, выражающим определенную тенденцию развития, чаще всего можно считать только одну из ветвей: Либо восходящую, либо нисходящую. В особых, более конкретных ситуациях мы не отрицаем возможности объединения обеих ветвей в единый тренд; 3) так как свободный член уравнения а как значение показателя в начальный момент (период) отсчета времени, как правило, величина положительная, то характер тренда определяется знаками параметров b и с: а) при b>0 и с>0 имеем восходящую ветвь, т.е. тенденцию к ускоренному росту уровней; б) при b<0 и с<0 имеем нисходящую ветвь — тенденцию к ускоренному сокращению уровней; в) при b>0 и с<0 имеем либо восходящую ветвь с замедляющимся ростом уровней, либо обе ветви параболы, восходящую и нисходящую, если их по существу можно считать единым процессом г) при b<0 и с>0 имеем либо нисходящую ветвь с замедляющимся сокращением уровней, либо обе ветви — нисходящую и восходящую, если их можно считать единой тенденцией; 4) при параболической форме тренда, в зависимости от соотношений между его параметрами, цепные темпы изменений могут либо уменьшаться, либо некоторое время возрастать, но при достаточно длительном периоде рано или поздно темпы роста обязательно начинают уменьшаться, а темпы сокращений уровней при b <0 и с<0 обязательно начинаrот возрастать (по абсолютной величине относительного изменения). Параметры параболического уравнения определяются из системы уравнения: для параболы
Экспоненциальный тренд и его свойства
Экспоненциальным трендом называют тренд, выраженный уравнением: или в форме: . Основные свойства экспоненциального тренда: 1. Абсолютные изменения уровней тренда пропорциональны самим уровням. 2. Экспонента экстремумов не имеет: при k>1 тренд стремится к +∞, при k<1 тренд стремится к нулю. 3. Уровни тренда представляют собой геометрическую прогрессию: уровень периода с номером t=m есть akm. 4. При k>1 тренд отражает ускоряющийся неравномерно рост уровней, при k<1 тренд отражает замедляющееся неравномерно уменьшение уровней. Параметры нелинейного уравнения имеют вид для экспоненты вида
ЗАДАНИЕ
Динамика роста народонаселения Земли характеризуется следующими данными:
По своим данным варианта (для определения данных варианта прибавьте к базовым значениям второго столбца (к значениям, расположенным после запятой) свой порядковый номер в списке группы) на основании имеющихся фактических данных динамического ряда 1. постройте экспоненциальное (нелинейное) регрессионное уравнение, описывающее изучаемый процесс изменения во времени,; 2. определите теоретические значения, выравненные по экспоненте и три прогнозные оценки на 2014-2016 годы; 3. Оцените колеблемость изучаемого показателя относительно линии тренда; 4. Определите среднюю ошибку аппроксимации ε; 5. Изобразите динамику временных рядов на графике по фактическим (эмпирическим) и теоретическим (выравненным по теоретической модели в виде регрессионного экспоненциального уравнения) данным, сделайте выводы. ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|