Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Вступ. Предмет та завдання опору матеріалів. Гіпотези. Об’єкти вивчення.





Семестр

Лекція №1

Вступ. Предмет та завдання опору матеріалів. Гіпотези. Об’єкти вивчення.

План лекції:

1.1. Вступ

1.2. Задачі опору матеріалів

1.3. Коротка історична довідка

1.4. Основні гіпотези опору матеріалів.

 

Вступ

Опір матеріалів – це наука про інженерні методи розрахунку на міцність, жорсткість і стійкість елементів конструкцій, деталей машин і приладів.

Що ж таке міцність, жорсткість та стійкість? Чому саме інженерні методи розрахунку? Що слід розуміти під терміном конструкція?

Міцність – це здатність тіл протидіяти зовнішнім силам, не руйнуючись.

Жорсткість – це здатність тіл протидіяти зовнішнім силам, якомога менше деформуючись.

Стійкість – це здатність тіл протидіяти зовнішнім силам, зберігаючи первісну форму пружної рівноваги.

Як бачимо, опір матеріалів вивчає поведінку тіл у полі зовнішніх сил. Але ж цим займається і теоретична механіка. Чим тоді відрізняються курси опору матеріалів і теоретичної механіки?

Якщо в теоретичній механіці всі тіла вважають абсолютно твердими і розглядають закономірності руху цих тіл, то в задачах опору матеріалів усі тіла вважають твердими, але здатними до деформацій, і розглядають процеси, пов’язані з цими деформаціями, а рух цих тіл цікавить тільки з точки зору утворення додаткових сил (наприклад, сил інерції).

Під терміном „конструкція” будемо розуміти сукупність елементів (тіл), які функціонально пов’язані між собою та виконують певне технічне завдання. Тіло, в свою чергу, теж може виступати в ролі конструкції, якщо, наприклад, у постановці задачі потрібно враховувати неоднорідну побудову (композитні матеріали).

Опір матеріалів є наукою інженерних методів розрахунку саме тому, що постановка задач передбачає рівень абстрагування та спрощення таким, щоб інженер-практик міг розв’язати ці задачі, використовуючи доступний для нього математичний апарат.

Таким чином, опір матеріалів – це загальна наука про міцність і надійність конструкцій та їх елементів. Ці ж питання вивчають й інші суміжні дисципліни: будівельна механіка стержневих систем, яка в більшості розглядає закономірності, пов’язані зі створенням цілих систем стержнів, функціонально пов’язаних між собою: математична теорія пружності, теорія пластичності, теорія повзучості, реологія та ін. Але ці науки використовують більш розвинений апарат математики.

При вирішенні основної задачі опору матеріалів − вибору матеріалу й поперечних розмірів для елементів споруд і машин, крім уміння обчислювати напруження, необхідне знання механічних властивостей реальних матеріалів. Це зумовлює необхідність лабораторних експериментальних досліджень. Глибокі знання про міцність матеріалів, що використовуються, і не менш глибоке і чітке уявлення про розподіл напружень в елементах конструкцій − ось що повинен дати курс опору матеріалів інженеру, аби достатньо озброїти його для вирішення практичних задач.

 

Задачі опору матеріалів

При проектуванні конструкцій і машин інженеру доводиться вибирати матеріал і поперечні розміри для кожного елемента конструкції так, щоб він надійно, без ризику руйнуватися або спотворити свою форму, чинив опір дії зовнішніх сил, які передаються на нього від сусідніх частин конструкції, тобто, щоб була забезпечена нормальна робота цього елемента. Підстави для правильного вирішення цієї задачі дає інженеру наука про опір матеріалів.

Опір матеріалів, вивчаючи поведінку різних матеріалів під впливом сил, вказує, як підібрати для кожного елемента конструкції необхідний матеріал і поперечні розміри за умови повної надійності роботи і найбільшого здешевлення конструкції. Іноді в опорі матеріалів доводиться вирішувати видозмінену задачу — перевіряти достатність розмірів уже запроектованої або існуючої конструкції. Вимоги надійності та найбільшої економії суперечать одна одній. Перше, зазвичай, призводить до збільшення матеріалоємності, друге ж вимагає її зниження. Ця суперечність є найважливішим елементом наукової методики, що зумовлює розвиток опору матеріалів як науки.

Часто настає момент, коли існуючі матеріали і методи перевірки міцності не в змозі задовольнити потреби практики, що ставить на чергу вирішення нових задач (наприклад, використовування великих швидкостей в техніці взагалі, в авіації та турбобудуванні зокрема, перекриття великих прольотів, динамічні задачі та ін.). Тоді починаються пошуки нових матеріалів, дослідження їх властивостей, поліпшення і створення нових методів розрахунку та проектування. Опір матеріалів повинен встигати за загальним прогресом техніки. У деяких випадках інженеру, крім основних вимог – надійності й найбільшої економії, – при виконанні конструкції доводиться задовольняти й інші умови, наприклад, вимоги до підвищення темпів спорудження (при відновленні зруйнованих споруд), мінімальної ваги (при конструюванні літаків) і т.п. Ці обставини також відображаються на виборі матеріалу, розмірів і форм самої конструкції та її елементів.

 

Коротка історична довідка

Початок розвитку опору матеріалів як науки відносять до 1638 р. і пов'язують з ім'ям Галілео Галілея, знаменитого італійського вченого. Він був професором математики в Падуї, жив у період розпаду феодального ладу, розвитку торгового капіталу, налагодження міжнародних морських зв'язків, зародження гірничої та металургійної промисловості.

Нова економіка того часу поставила за мету вирішення ряду нових технічних проблем. Пожвавлення зовнішніх торговельних відносин зумовило завдання збільшення вантажопідйомності суден, а це спричинило необхідність зміни їх конструкції. Водночас постало питання реконструкції та створення нових внутрішніх водних шляхів, включаючи розбудову каналів і шлюзів. Ці технічні завдання не могли бути вирішені простим копіюванням існуючих раніше конструкцій суден і споруд, Виявилося, що необхідно навчитися шляхом розрахунку оцінювати міцність елементів конструкції залежно від їх розмірів і величини діючих на них навантажень. Значна частина робіт Галілея була присвячена вирішенню задач про залежність між розмірами балок та інших стержнів із тими навантаженнями, які можуть витримати ці елементи конструкції. Він вказав, що отримані ним результати можуть «принести велику користь при спорудженні великих суден, особливо при зміцненні палуб і покриттів, оскільки в таких спорудах легкість має величезне значення». Дослідження Галілея опубліковані в його книзі „Discorsi e Dimostrazioni matematiche” (1638, Лейден, Голландія).

Подальший розвиток опору матеріалів відбувався паралельно з розвитком техніки будівництва і машинобудування, що пов'язало його з цілим рядом робіт видатних учених-математиків, фізиків та інженерів, у тому числі й вітчизняних. Слід навести і негативний приклад, який досить сильно вплинув на розвиток опору матеріалів. І. Ньютон, якому завдячують бурхливим розвитком математика й механіка в цілому, у зв'язку з особистою неприязню до Р. Гука, зробив багато для того, щоб опір матеріалів - галузь науки, якою плідно займався Гук, вважалася недостойною уваги видатних умів того часу. Це було причиною того, що механіка твердого деформівного тіла, зокрема опір матеріалів, були загальмовані в своєму розвитку років на півтораста.

Великий внесок в науку про опір матеріалів в XVIII столітті вніс дійсний член Петербурзької Академії наук Леонард Ейлер, що вирішив задачу про стійкість стиснутих стержнів. У XIX столітті світової популярності набули роботи Д.І. Журавського і X.С. Головіна. У зв'язку з проектуванням і спорудженням мостів на Миколаївській залізниці, що будувалася між Петербургом і Москвою, Д.І. Журавський вирішив ряд важливих і цікавих питань, пов'язаних з міцністю балок при їх згині. X.С. Головін уперше правильно розв'язав задачу про міцність кривих стержнів. Збагатили світову науку роботи Ф.С. Ясинського з питань стійкості елементів конструкцій, викликані необхідністю вивчення причин руйнування мостів.

Професор М.О. Белелюбський організував і довго керував найбільшою в світі лабораторією з випробовувань матеріалів у Петербурзькому інституті інженерів шляхів сполучення. Він же протягом багатьох років працював головою міжнародного суспільства з випробовувань матеріалів. Кінець ІХ століття був ознаменований появою перших наукових робіт одного з видатних учених у галузі механіки – С.П. Тимошенка.

З початку XX століття роль вітчизняних учених в опорі матеріалів стала провідною. Професор І.Г. Бубнов заснував сучасну науку про міцність корабля. Академік А.Н. Крилов, крім подальшого розвитку праць про розрахунок корабля, провів важливі дослідження в галузі динамічних розрахунків.

Професор Н.П. Пузиревський створив нову методику розрахунку балок на пружній основі. З численних праць академіка Б.Г. Гальоркіна досить згадати роботи, присвячені розвитку варіаційних методів механіки, загальному вирішенню просторової задачі теорії пружності й розрахунку плит. Багатьох питань розрахунку на міцність торкалися і роботи С.П. Тимошенка.

Академік А.Н. Диннік опублікував ряд капітальних робіт, присвячених стійкості елементів конструкцій. Проф. М.М. Герсеванов плідно працював у галузі механіки грунтів, розв'язував задачі міцності і стійкості основ і фундаментів споруд і машин. Професори П.Ф. Папкович і Ю.А. Шиманський очолили школу вчених, що займалася питаннями міцності кораблів. Професор М.М. Давиденков спільно зі своїми учнями створив нову теорію, що пояснює причини руйнування матеріалів. Велике значення мають і його праці з питань динамічної міцності та руйнування при ударі.

Зусиллями наших інженерів розроблено нову теорію розрахунку залізобетонних конструкцій, яка відображає дійсний характер роботи цих конструкцій і при забезпеченій міцності дає значну економію матеріалів.

Академік М.І. Мусхелішвілі розвинув сучасні методи теорії функцій комплексної змінної й теорії сингулярних інтегральних рівнянь і застосував їх до вирішення ряду проблем. Професор В.3. Власов створив нову оригінальну

теорію розрахунку тонкостінних оболонок і тонких стержнів, що мають широке використання в різних конструкціях. Великий внесок у розвиток механіки твердого деформівного тіла зробили академіки А.Д. Коваленко (термопружність і термопластичність), Г.М.Савін (теорія пластин та оболонок, концентрація напружень), Г.С.Писаренко, Я.С. Підстригач та інші. Наукова школа, яку вони створили, є однією з найпотужніших шкіл

механіків у світі.

 

Лекція №2

Поняття про деформації.

Під деформаціями розуміють будь-які зміни розмірів або форми тіла. Деформації можуть бути абсолютні та відносні (коли їх вимірюють відношенням зміни величини до її початкового значення). У більшості випадків деформація тіла складається з двох частин: пружної та пластичної (залишкової).

Пружні – це деформації, які зникають при розвантаженні тіла.

Пластичні – такі, що залишаються після розвантаження. За нормальної експлуатації інженерних конструкцій не допускаються пластичні деформації, коли розміри і форми елементів конструкцій незворотно змінюються.

Визначення умов виникнення та зростання пластичних деформацій має велике значення для знаходження тих навантажень, які безпечно можуть передаватися на конструкцію.

 

Сили та їх класифікація.

Сили, що діють на тіло, можна класифікувати за різними ознаками. Вони можуть бути зовнішніми та внутрішніми.

Зовнішні – це сили, які прикладаються до тіла за рахунок інших тіл. Зовнішні сили, розподілені по всьому об’єму тіла або його частині, називають об’ємними або масовими. Зовнішні сили, прикладені по поверхні, називають поверхневими.

Навантаження – це система зовнішніх сил, що діють на тіло.

Внутрішніми силами називають сили взаємодії між частинами твердого тіла. Зовнішні сили викликають деформації тіл, що призводить до виникнення вже внутрішніх сил.

Навантаження тіла може бути статичним або динамічним. Статично прикладені – це сили, при дії яких практично немає прискорень тіла (чи його частин). Це має місце, коли навантаження тіла проводити, повільно змінюючи від нуля до повного прикладання сили.

Динамічним називають навантаження, при якому виникають прискорення тіла (чи якоїсь його частини) і, як наслідок, сили інерції.

Навантаження може бути зосередженим (діяти в досить локальній зоні – практично в точці) (рис.1.4а) та розподіленим (тобто діяти або на певній площадці, або на певній довжині) (рис.1.4б,в). Якщо розподіл має рівномірний характер (рис.1.4в), навантаження називають рівномірно-розподіленим.

 

Умови рівноваги

У зв΄язку з тим, що опір матеріалів розглядає деформації тіл, у більшості випадків нехтуючи їх рухом, одними з основних математичних залежностей, що використовуються, є рівняння рівноваги.

В загальному випадку просторової задачі (рис.1.5), вибравши ортогональну декартову систему координат, їх можна сформулювати так:

– суми проекцій усіх сил, що діють на тіло, на відповідні осі дорівнюють

нулю;

– суми моментів усіх сил, що діють на тіло, відносно будь-якої координатної

осі дорівнюють нулю.

 

Напруження

При вирішенні питання про міцність конструкції недостатньо знати тільки систему сил, що діють на цю конструкцію. Необхідно знати ще її розміри та матеріал, з якого вона зроблена. На початку XIX століття Огюст Коші, відомий математик і механік, увів поняття напруження, яке одночасно характеризувало й силові фактори, що діяли в перерізі, й геометричні розміри цього перерізу. Напруження в загальному вигляді – це відношення сили, що діє по площадці до величини (площі) цієї площадки.

 

Лекція №3

Лекція №4

Коефіцієнт Пуассона

 

Лекція №5

Діаграма напружень

Зображена на рис 3.2 діаграма ілюструє поведінку матеріалу при заданих розмірах зразка, тому для отримання графіка, який характеризував би матеріал, що досліджується, діаграму розтягу представляють вже трохи в іншому вигляді.

 

Лекція №6

Лекція №7

Плоский напружений стан

 

 

 

Круги Мора (пряма задача)

Круг Мора – це геометричне місце точок (у випадку плоского напруженого стану – коло), координати яких відповідають чисельним значенням нормальних і дотичних напружень, що діють у точці на площадках, які мають різні кути нахилу. Тобто круг Мора – це геометрична інтерпретація напруженого стану в певній точці навантаженого твердого тіла.

Тепер отримаємо аналітичні залежності для розв’язування оберненої задачі. Для цього можна або розглянути залежності (5.7; 5.10) або вивести їх за допомогою круга Мора.

 

Лекція №8

Лекція №9

Теорії міцності

Міцність тіла, що знаходиться у складному напруженому стані, навряд чи може бути оцінена порівнянням із допустимим напруженням тільки одного, нехай і найбільшого напруження.

 

І теорія міцності

Перше найпростіше припущення полягає в тому, що небезпечний стан матеріалу настає в той момент, коли найбільше за абсолютною величиною нормальне напруження досягає небезпечного значення. Цю гіпотезу називають теорією найбільших напружень або першою теорією міцності.

Таким чином, і в загальному випадку, коли всі три головні напруження σ1,σ2 і σ3 не дорівнюють нулю, при перевірці за цією теорією необхідно враховувати величину лише найбільшого розтягуючого та найбільшого стискаючого напруження. Величини ж двох інших головних напружень відсутні і, начебто, ніякого впливу на міцність матеріалу, на досягнення ним небезпечного стану не впливають і про них при перевірці міцності можна забути. Тоді до певної міри втрачається відмінність між перевіркою міцності при лінійному напруженому стані та при об'ємному.

При перевірці вказаної гіпотези дослідами виявилася невідповідність її висновків із результатами дослідів на всебічний стиск не тільки пластичних матеріалів, але й крихких.

Лише для випадку розтягу крихких матеріалів ця теорія узгоджується з дослідами. Оскільки ця теорія дає або зайві, або недостатні розміри перетинів елементів конструкцій при складному напруженому стані, її не застосовують і вона має лише історичне значення.

 

ІІ теорія міцності

Висунута недоліками першої, і певною мірою на противагу їй, друга гіпотеза пропонує виникнення небезпечного стану визначати не рівнем найбільшого напруження, а величиною найбільшого відносного видовження (або вкорочення).

Якщо це так, то перевірку міцності слід проводити за найбільшими відносними деформаціями. Зберігаючи той же коефіцієнт запасу, для найбільшої відносної поздовжньої деформації в загальному випадку (всі головні напруження не дорівнюють нулю) за допустиму ми повинні вибирати ту ж величину, що і при простому розтягу.

 

Ця гіпотеза також суперечить результатам досліджень міцності пластичних матеріалів. Якби вона була для таких матеріалів вірна, то зразок, що розтягується в двох або трьох напрямах, був би міцнішим за зразок, який розтягується лінійно. Досвід цього не підтверджує. Не підтверджується ця гіпотеза і при всесторонньому рівномірному стиску. Для крихкого стану матеріалу теорія найбільших відносних деформацій дає результати, що, як правило, узгоджуються з дослідом.

 

ІІІ теорія міцності

Третя гіпотеза міцності (або теорія найбільших дотичних напружень) стверджує, що головну роль у виникненні небезпечного стану матеріалу відіграє найбільше напруження, але вже не нормальне, а дотичне, що дорівнює напіврізниці найбільшого і найменшого головних напружень:

Третя умова міцності достатньо близько узгоджується з результатами дослідів, особливо для пластичних матеріалів. Вона підтверджується дослідами на всебічний стиск.

Ця теорія забезпечує міцність елементів конструкцій, що розраховуються.

У тому простому вигляді розрахункових напружень (5.36) умова міцності може бути написана лише для тих матеріалів, для яких допустимі напруження на розтяг і стиск можуть бути прийняті рівними, наприклад, для сталі. Для таких матеріалів, як чавун, камінь і т. д. в умову (5.36) необхідно внести зміни, які вперше запропонував Х.Мор.

 

Критерій Мора

Формули (5.39) і (5.40) представляють умову міцності за теорією найбільшої потенціальної енергії зміни форми.

 

Семестр

Лекція №1

Вступ. Предмет та завдання опору матеріалів. Гіпотези. Об’єкти вивчення.

План лекції:

1.1. Вступ

1.2. Задачі опору матеріалів

1.3. Коротка історична довідка

1.4. Основні гіпотези опору матеріалів.

 

Вступ

Опір матеріалів – це наука про інженерні методи розрахунку на міцність, жорсткість і стійкість елементів конструкцій, деталей машин і приладів.

Що ж таке міцність, жорсткість та стійкість? Чому саме інженерні методи розрахунку? Що слід розуміти під терміном конструкція?

Міцність – це здатність тіл протидіяти зовнішнім силам, не руйнуючись.

Жорсткість – це здатність тіл протидіяти зовнішнім силам, якомога менше деформуючись.

Стійкість – це здатність тіл протидіяти зовнішнім силам, зберігаючи первісну форму пружної рівноваги.

Як бачимо, опір матеріалів вивчає поведінку тіл у полі зовнішніх сил. Але ж цим займається і теоретична механіка. Чим тоді відрізняються курси опору матеріалів і теоретичної механіки?

Якщо в теоретичній механіці всі тіла вважають абсолютно твердими і розглядають закономірності руху цих тіл, то в задачах опору матеріалів усі тіла вважають твердими, але здатними до деформацій, і розглядають процеси, пов’язані з цими деформаціями, а рух цих тіл цікавить тільки з точки зору утворення додаткових сил (наприклад, сил інерції).

Під терміном „конструкція” будемо розуміти сукупність елементів (тіл), які функціонально пов’язані між собою та виконують певне технічне завдання. Тіло, в свою чергу, теж може виступати в ролі конструкції, якщо, наприклад, у постановці задачі потрібно враховувати неоднорідну побудову (композитні матеріали).

Опір матеріалів є наукою інженерних методів розрахунку саме тому, що постановка задач передбачає рівень абстрагування та спрощення таким, щоб інженер-практик міг розв’язати ці задачі, використовуючи доступний для нього математичний апарат.

Таким чином, опір матеріалів – це загальна наука про міцність і надійність конструкцій та їх елементів. Ці ж питання вивчають й інші суміжні дисципліни: будівельна механіка стержневих систем, яка в більшості розглядає закономірності, пов’язані зі створенням цілих систем стержнів, функціонально пов’язаних між собою: математична теорія пружності, теорія пластичності, теорія повзучості, реологія та ін. Але ці науки використовують більш розвинений апарат математики.

При вирішенні основної задачі опору матеріалів − вибору матеріалу й поперечних розмірів для елементів споруд і машин, крім уміння обчислювати напруження, необхідне знання механічних властивостей реальних матеріалів. Це зумовлює необхідність лабораторних експериментальних досліджень. Глибокі знання про міцність матеріалів, що використовуються, і не менш глибоке і чітке уявлення про розподіл напружень в елементах конструкцій − ось що повинен дати курс опору матеріалів інженеру, аби достатньо озброїти його для вирішення практичних задач.

 

Задачі опору матеріалів

При проектуванні конструкцій і машин інженеру доводиться вибирати матеріал і поперечні розміри для кожного елемента конструкції так, щоб він надійно, без ризику руйнуватися або спотворити свою форму, чинив опір дії зовнішніх сил, які передаються на нього від сусідніх частин конструкції, тобто, щоб була забезпечена нормальна робота цього елемента. Підстави для правильного вирішення цієї задачі дає інженеру наука про опір матеріалів.

Опір матеріалів, вивчаючи поведінку різних матеріалів під впливом сил, вказує, як підібрати для кожного елемента конструкції необхідний матеріал і поперечні розміри за умови повної надійності роботи і найбільшого здешевлення конструкції. Іноді в опорі матеріалів доводиться вирішувати видозмінену задачу — перевіряти достатність розмірів уже запроектованої або існуючої конструкції. Вимоги надійності та найбільшої економії суперечать одна одній. Перше, зазвичай, призводить до збільшення матеріалоємності, друге ж вимагає її зниження. Ця суперечність є найважливішим елементом наукової методики, що зумовлює розвиток опору матеріалів як науки.

Часто настає момент, коли існуючі матеріали і методи перевірки міцності не в змозі задовольнити потреби практики, що ставить на чергу вирішення нових задач (наприклад, використовування великих швидкостей в техніці взагалі, в авіації та турбобудуванні зокрема, перекриття великих прольотів, динамічні задачі та ін.). Тоді починаються пошуки нових матеріалів, дослідження їх властивостей, поліпшення і створення нових методів розрахунку та проектування. Опір матеріалів повинен встигати за загальним прогресом техніки. У деяких випадках інженеру, крім основних вимог – надійності й найбільшої економії, – при виконанні конструкції доводиться задовольняти й інші умови, наприклад, вимоги до підвищення темпів спорудження (при відновленні зруйнованих споруд), мінімальної ваги (при конструюванні літаків) і т.п. Ці обставини також відображаються на виборі матеріалу, розмірів і форм самої конструкції та її елементів.

 

Коротка історична довідка

Початок розвитку опору матеріалів як науки відносять до 1638 р. і пов'язують з ім'ям Галілео Галілея, знаменитого італійського вченого. Він був професором математики в Падуї, жив у період розпаду феодального ладу, розвитку торгового капіталу, налагодження міжнародних морських зв'язків, зародження гірничої та металургійної промисловості.

Нова економіка того часу поставила за мету вирішення ряду нових технічних проблем. Пожвавлення зовнішніх торговельних відносин зумовило завдання збільшення вантажопідйомності суден, а це спричинило необхідність зміни їх конструкції. Водночас постало питання реконструкції та створення нових внутрішніх водних шляхів, включаючи розбудову каналів і шлюзів. Ці технічні завдання не могли бути вирішені простим копіюванням існуючих раніше конструкцій суден і споруд, Виявилося, що необхідно навчитися шляхом розрахунку оцінювати міцність елементів конструкції залежно від їх розмірів і величини діючих на них навантажень. Значна частина робіт Галілея була присвячена вирішенню задач про залежність між розмірами балок та інших стержнів із тими навантаженнями, які можуть витримати ці елементи конструкції. Він вказав, що отримані ним результати можуть «принести велику користь при спорудженні великих суден, особливо при зміцненні палуб і покриттів, оскільки в таких спорудах легкість має величезне значення». Дослідження Галілея опубліковані в його книзі „Discorsi e Dimostrazioni matematiche” (1638, Лейден, Голландія).

Подальший розвиток опору матеріалів відбувався паралельно з розвитком техніки будівництва і машинобудування, що пов'язало його з цілим рядом робіт видатних учених-математиків, фізиків та інженерів, у тому числі й вітчизняних. Слід навести і негативний приклад, який досить сильно вплинув на розвиток опору матеріалів. І. Ньютон, якому завдячують бурхливим розвитком математика й механіка в цілому, у зв'язку з особистою неприязню до Р. Гука, зробив багато для того, щоб опір матеріалів - галузь науки, якою плідно займався Гук, вважалася недостойною уваги видатних умів того часу. Це було причиною того, що механіка твердого деформівного тіла, зокрема опір матеріалів, були загальмовані в своєму розвитку років на півтораста.

Великий внесок в науку про опір матеріалів в XVIII столітті вніс дійсний член Петербурзької Академії наук Леонард Ейлер, що вирішив задачу про стійкість стиснутих стержнів. У XIX столітті світової популярності набули роботи Д.І. Журавського і X.С. Головіна. У зв'язку з проектуванням і спорудженням мостів на Миколаївській залізниці, що будувалася між Петербургом і Москвою, Д.І. Журавський вирішив ряд важливих і цікавих питань, пов'язаних з міцністю балок при їх згині. X.С. Головін уперше правильно розв'язав задачу про міцність кривих стержнів. Збагатили світову науку роботи Ф.С. Ясинського з питань стійкості елементів конструкцій, викликані необхідністю вивчення причин руйнування мостів.

Професор М.О. Белелюбський організував і довго керував найбільшою в світі лабораторією з випробовувань матеріалів у Петербурзькому інституті інженерів шляхів сполучення. Він же протягом багатьох років працював головою міжнародного суспільства з випробовувань матеріалів. Кінець ІХ століття був ознаменований появою перших наукових робіт одного з видатних учених у галузі механіки – С.П. Тимошенка.

З початку XX століття роль вітчизняних учених в опорі матеріалів стала провідною. Професор І.Г. Бубнов заснував сучасну науку про міцність корабля. Академік А.Н. Крилов, крім подальшого розвитку праць про розрахунок корабля, провів важливі дослідження в галузі динамічних розрахунків.

Професор Н.П. Пузиревський створив нову методику розрахунку балок на пружній основі. З численних праць академіка Б.Г. Гальоркіна досить згадати роботи, присвячені розвитку варіаційних методів механіки, загальному вирішенню просторової задачі теорії пружності й розрахунку плит. Багатьох питань розрахунку на міцність торкалися і роботи С.П. Тимошенка.

Академік А.Н. Диннік опублікував ряд капітальних робіт, присвячених стійкості елементів конструкцій. Проф. М.М. Герсеванов плідно працював у галузі механіки грунтів, розв'язував задачі міцності і стійкості основ і фундаментів споруд і машин. Професори П.Ф. Папкович і Ю.А. Шиманський очолили школу вчених, що займалася питаннями міцності кораблів. Професор М.М. Давиденков спільно зі своїми учнями створив нову теорію, що пояснює причини руйнування матеріалів. Велике значення мають і його праці з питань динамічної міцності та руйнування при ударі.

Зусиллями наших інженерів розроблено нову теорію розрахунку залізобетонних конструкцій, яка відображає дійсний характер роботи цих конструкцій і при забезпеченій міцності дає значну економію матеріалів.

Академік М.І. Мусхелішвілі розвинув сучасні методи теорії функцій комплексної змінної й теорії сингулярних інтегральних рівнянь і застосував їх до вирішення ряду проблем. Професор В.3. Власов створив нову оригінальну

теорію розрахунку тонкостінних оболонок і тонких стержнів, що мають широке використання в різних конструкціях. Великий внесок у розвиток механіки твердого деформівного тіла зробили академіки А.Д. Коваленко (термопружність і термопластичність), Г.М.Савін (теорія пластин та оболонок, концентрація напружень), Г.С.Писаренко, Я.С. Підстригач та інші. Наукова школа, яку вони створили, є однією з найпотужніших шкіл

механіків у світі.

 







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.