|
Дифракция Френеля на круглом отверстии и диске4.3.1. Дифракция Френеля на круглом отверстии Сферическая волна, распространяющаяся из точечного источника монохроматического света S, встречает на своем пути экран с круглым отверстием, диаметр которого d= BC. Пусть Ф – фронт волны, который является частью поверхности сферы. Разобьем поверхность фронта на зоны Френеля (см. рис.2) так, что волны от соседних зон приходят в точку наблюдения М в противофазе. Тогда амплитуда результирующей волны в точке М А=А1-А2+А3-А4+… Аm, (1) где Аi – амплитуда волны, пришедшей от i -ой зоны Френеля. Перед Аm берется знак плюс, если m – нечетное, и минус, если m – четное. Величина Аi зависит от площади si i -той зоны и угла ai между внешней нормалью к поверхности зоны в какой-либо точке и прямой, направленной из этой точки в точку М (см. рис. 2, где, в частности, показан угол a 3). Можно показать, что все зоны Френеля примерно равновелики по площади. Увеличение же угла ai с ростом номера зоны приводит к уменьшению амплитуды А i. Она уменьшается с ростом i также и вследствие увеличения расстояния от зоны до точки М. Таким образом, А1>А2>…> Am. При большом числе зон можно приближенно считать, что Аi= (Ai -1 +Ai +1) / 2. (2) Перепишем теперь (1) в виде (3) так как, согласно (2), все выражения, стоящие в скобках, равны нулю. Можно показать, что общее число m зон Френеля, обращенное к точке М, , (4) где d=BC – диаметр отверстия, R=SO, L=OM (см. рис. 2), l – длина волны. Если d = 1 см, R = L = 10 см и l = 500 нм, то m = 1000. В этом случае Аm<<A1 и слагаемым Аm/ 2 в (3) можно пренебречь. Тогда, согласно (3), А=А 1/2. (5) Таким образом, амплитуда результирующей волны в точке М определяется как бы действием только половины центральной зоны Френеля. Ее диаметр d, как следует из (4) при m =1, R=L =10 см и l =500 нм, равен 0,32 мм. Следовательно, распространение света от S к М происходит так, будто пучок света распространяется внутри очень узкого канала вдоль SM, т.е. прямолинейно. В этом случае круговое пятно диаметром ED (см. рис. 2) равномерно освещено, и вне его наблюдается тень. Следовательно, дифракционная картина отсутствует, когда диаметр отверстия BC = d>>l. При уменьшении диаметра отверстия до величины d 1 мм число зон согласно (4) уменьшается и Аm становится сравнимым с А 1, и поэтому пренебречь слагаемым Аm/ 2в (3) нельзя. При нечетном числе зон, согласно (3), А=А 1 / 2 + Аm/ 2 (6) и в точке М наблюдается максимум (светлое пятно). При четном числе зон А=А 1 / 2 - Аm/ 2 (7) и в точке М будет наблюдаться минимум (темное пятно). Этот факт особенно наглядно противоречит закону прямолинейного распространения света. Очевидно, что максимум и минимум будут тем сильнее отличаться друг от друга, чем ближе значение Аm к А 1, т.е. когда число зон m мало (m 10). Расчет амплитуды в других точках экрана более сложен. Можно показать, что дифракционная картина вблизи точки М имеет вид чередующихся темных и светлых колец с центрами в точке М. По мере удаления от точки М интенсивность максимумов света убывает. Если на пути световой волны в плоскости отверстия поставить зонную пластинку, которая перекрывала бы все четные зоны, то А=А1+А3+А5+… и интенсивность I=A 2 в точке М резко возрастает. Еще большего эффекта можно достичь, не перекрывая четные зоны, а изменяя фазу их колебаний на p, тогда А=А1+А2+А3+… Такая пластинка называется фазовой зонной пластинкой, и использование ее позволяет получить дополнительное увеличение интенсивности в 4 раза. Опыт подтверждает эти выводы: зонная пластинка увеличивает интенсивность в точке М, действуя подобно собирающей линзе. 4.3.2. Дифракция Френеля на небольшом диске (круглом непрозрачном экране) Способ построения зон Френеля на открытой части волнового фронта Ф падающей монохроматической волны показан на рис. 3. Пусть диск закрывает несколько зон, действие которых не будем учитывать. Нумерацию зон начнем от первой открытой зоны, расстояние до краев которой от точки М равны L и L+l/ 2. Последнюю открытую зону обозначим через m. Проведя анализ, подобный предыдущему (см. 4.3.1), и полагая, что m достаточно велико, получим для амплитуды результирующей волны, выражение идентичное (5), т.е. А=А 1 / 2. Дифракционная картина на экране Э имеет вид концентрических темных и светлых колец с центром в точке М, где всегда находится максимум (пятно Пуассона). Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|