Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Аллостерическая регуляция сродства гемоглобина к кислороду 2,3-ДФГ





2,3-ДФГ снижает сродство гемоглобина к кислороду и, таким образом, повышает отдачу кислорода тканям. Если кровь израсходовала весь свой запас ДФГ, гемоглобин остается фактически насыщенным кислородом. При акклиматизации в условиях высокогорья содержание ДФГ в эритроцитах резко увеличивается. ДФГ является аллотерическим лигандом, так как связывается с гемоглобином в другом по сравнению с О2 участком. ДФГ встраивается в полость тетрамерной молекулы гемоглобина, полость образована остатками всех 4 протомеров.

В Т – форме (дезоксигенерированной) молекулы Hb имеются дополнительные связи, и поэтому размер центральной полости больше, чем в R – форме (дезоксигемоглобине). Поэтому ДФГ взаимодействует только с Т – формой стабилизируя её, путем образования связи между атомами кислорода ДФГ и тремя положительно заряженными группами в каждой из b - цепей.

В легких при высоком парциальном давлении кислород взаимодействует с Hb, изменяется конформация белка, уменьшается центральная полость и ДФГ вытесняется из гемоглобина.

Виды гемоглобинов

Гемоглобины различаются по белковой части. Бывают физиологические и аномальные виды гемоглобинов. Физиологические образуются на разных этапах нормального развития организма, а аномальные - вследствие нарушения последовательности аминокислот в глобине физиологических видов гемоглобина.

Физиологические виды гемоглобина

1) эмбриональные гемоглобины (Gover I, Gover II). На ранних этапах развития плода в первые недели развития, когда в желточном мешке возникают очаги кроветворения начинается синтез e-цепей (эпсилон). Из четырёх e цепей образуется гемоглобин Gover I. Затем у эмбриона, длина которого не превышает 2,5см, начинается синтез a-цепей, которые вместе e-цепями образуют гемоглобин Gover II (2a 2e). Затем синтез e-цепей прекращается и Gover гемоглобины полностью исчезают у трехмесячного эмбриона. Если они остаются у новорожденного, то это признак врожденной аномалии развития.



2) фетальный гемоглобин – HbF (от латинского fetus – плод). Фетальный гемоглобин сменяет эмбриональные гемоглобины, вместо эпсилон – цепей (e - цепей) начинают синтезироваться гамма-цепи (g - цепи). HbF состоит из 2 a и 2g цепей. HbF – является главным гемоглобином плода и составляет к моменту рождения 50-80% всего гемоглобина. HbF имеет более высокое сродство к кислороду, что позволяет ему забирать кислород от гемоглобина матери и передавать его тканям плода. Эта особенность связана с низким сродством HbF к 2,3-ФГК.

Кроме перечисленных основных видов гемоглобинов плода, у здорового плода выделяются и другие виды гемоглобинов: например, гемоглобин Bart`s, (4g), Portland–1 (S2g2).

 
 

 


3) гемоглобин А1 – тетрамер (2a 2b) составляет около 98% гемоглобина эритроцитов взрослого человека. Начинает синтезироваться на 8 месяце развития плода.

4) гемоглобин А2 – тетрамер (2a 2d). Его содержание в эритроцитах взрослого человека равно 2%. Гемоглобин А2, также как и гемоглобин F, обладает более высоким сродством к кислороду по сравнению с гемоглобином А1.

5) гемоглобин А3 (2a 2b) образуется по мере старения эритроцита, при присоединении к цистеину b-цепи глутатиона.

6) гемоглобин А – гликозилированный гемоглобин А.

Аномальные виды гемоглобинов

Аномальные гемоглобины возникают в результате мутации генов, кодирующих a и b цепи. Известно несколько сотен мутантных гемоглобинов человека (в большинстве случаев функционально активных).

Таблица №1 замена аминокислот в a и b пептидных цепях гемоглобина

тип гемоглобина нормальный остаток и его положение в цепи замена
С глу 6 в b - цепи лиз
Дb лей 28 в b - цепи глу
Е глу 26 в b - цепи лиз
G глу 43 в b - цепи ала
GpH асл 68 в a - цепи лиз
J лиз 16 в a- цепи асл
М вал 67 в b - цепи глу
О глу 116 в a - цепи лиз
S глу 6 в b - цепи вал

Болезни гемоглобинов

Болезни гемоглобинов называют гемоглобинозами, их насчитывают более 200.

Гемоглобинозы делятся на гемоглобинопатии и таласемии.

Гемоглобинопатии, возникают в результате точечных мутаций в структурных генах, кодирующих полипептидные цепи гемоглобина. Поэтому в крови появляется аномальный гемоглобин.

Серповидноклеточная анемия – классический пример наследственной гемоглобинопатии. В норме в b-субъединицах гемоглобина в шестом положении находится гидрофильная глутаминовая кислота. В гемоглобине S глутаминовая кислота заменена на гидрофобный валин. Такая замена приводит к появлению на поверхности b-субъединицы гидрофобного («липкого») участка, который соединяется с гидрофобным карманом другой молекулы гемоглобина S. Происходит полимеризация гемоглобина S и его осаждение в виде длинных волокон. Длинная волокнистая структура нарушает нормальную форму эритроцитов, превращая её из двояковогнутого диска в серповидную, которая имеет тенденцию блокировать капилляры. Такие эритроциты преждевременно разрушаются, способствуя развитию анемии. Если поражены обе гомологичные хромосомы, заболевание может оказаться смертельным. Заболевание широко распространено в географических зонах, где наиболее часто встречается злокачественная форма малярии. Высокий показатель заболеваемости можно объяснить положительной селекцией генома носителей аномальных генов. Серповидная красная кровяная клетка «неудобна» для развития малярийного плазмодия.

Существенное ухудшение состояния больных наблюдается в условиях высокогорья при низких давлениях кислорода. Это связано с тем, что полимеризоваться способна только дезоксиформа S гемоглобина. Так как в молекуле оксиформы S-гемоглобина нет гидрофобного кармана («липкого участка»), и она не способна к полимеризации.

Талассемия – генетическое заболевание, обусловленное отсутствием или снижением синтеза одной из цепей гемоглобина. При данном заболевании отсутствуют дефекты в структурных генах, кодирующих a, b, g,d -цепи.

Причиной талассемий являются мутации генов-операторов, контролирующих транскрипцию структурных генов a, b, g,d -цепей гемоглобина.

В результате несбалансированного образования глобиновых цепей образуются тетрамеры гемоглобина, состоящие из одинаковых протомеров.

В зависимости от того, формирование какой глобиновой цепи нарушается, выделяют a, b, g, e - талассемии.

Талассемии делятся так же на гомозиготные и гетерозиготные.

Гомозиготная b-талассемия – формирование b-цепи полностью подавляется. Симптомы заболевания появляются приблизительно через полгода после рождения, когда происходит полное переключение синтеза g-цепи гемоглобина F на b-цепь. У ребенка прогрессирует анемия. Увеличиваются селезенка и печень. Лицо приобретает монголоидные черты (из-за чрезмерного разрастания костного мозга скулы выдаются вперед, нос приплюснут), при рентгенологическом исследовании черепа наблюдается феномен «игл ежа» («hair – standing –on –end»). В попытке восполнить эритроциты, утраченные в результате не эффективного эритропоэза и увеличении гемолиза, ткани черепа, чрезмерно разрастаясь и гипертрофируясь, порождают такое изменение медуллярной пластинки.

α-талассемия - недостаток образо­вания α-глобиновых цепей приводит к нару­шению образования HbF у плода. Избыточ­ные γ-цепи образуют тетрамеры, называемые гемоглобином Барта. Этот гемоглобин при фи­зиологических условиях имеет повышенное сродство к кислороду и не проявляет коопе­ративных взаимодействий между протомерами. В результате гемоглобин Барта не обеспе­чивает развивающийся плод необходимым количеством кислорода, что приводит к тя­жёлой гипоксии. При α-талассемии отмечают высокий процент внутриутробной гибели пло­да. Выжившие новорождённые при переклю­чении с γ- на β-ген синтезируют β-тетрамеры или НbН, который, подобно гемоглобину Бар­та, имеет слишком высокое сродство к кис­лороду, менее стабилен, чем НbА и быстро разрушается. Это ведёт к развитию у больных тканевой гипоксии и к смерти вскоре после рождения.

Для всех этих заболеваний характерны некоторые общие закономерности:

1). нарушаются пропорции в составе гемоглобина крови. Например, при b- талассемии в крови появляется 15% гемоглобина А2, 15 – 60% гемоглобина F;

2). эритроциты приобретают не нормальную форму (мишеневидную, каплевидную). Такие эритроциты в пределах 1 дня захватываются ретикулярной соединительной тканью (например, селезенкой) и подвергаются распаду (по этой причине селезёнка оказывается гипертрофированной), что приводит к развитию гемолитической анемии.

Катаболизм гемоглобина

Старые поврежденные эритроциты фагоцитируются клетками РЭС и перевариваются в лизосомах. При распаде гемоглобина образуется жёлчный пигмент билирубин. Дальнейший катаболизм билирубина в печени, кишечнике и почках приводит к образованию уробилиногенов и уробилина, которые выходятся с калом и мочой. Железо, освобождающееся при распаде гема, снова используется для синтеза железосодержащих белков.

Сокращение Параметры Нормальные значения*
WBC -лейкоциты, 103/мкл 4,0¸9,0
LYM# -лимфоциты, в 1мкл 1200¸3000
MID# -моноциты, в 1мкл 90¸600
GRAN# -гранулоциты, в 1мкл 2000¸5500
LYM% -лимфоциты, % 19¸37
MID% -моноциты, % 3¸11
GRAN% -гранулоциты, % 47¸72
HGB -гемоглобин, г/л 117¸174
RBC -эритроциты, 106 в 1мкл 3,7¸5,1
HCT -гематокрит, % 36¸48
MCV -средний объем эритроцита, фл. 80¸95
RDW -однородность эритроцитов 11,5¸14,5
MCH -среднее содержание гемоглобина в эритроците, пг 27¸35
MCHC -средняя концентрация гемоглобина в эритроците, г/дл 33¸38
PLT -тромбоциты, 103/мкл 180¸320
MPV -средний объем тромбоцитов, фл. 6,2¸10
PCT -тромбокрит, % 0,15¸0,32
PDW -однородность тромбоцитов 15,3¸17,3
*-значения взяты из книги «Клиническая лабораторная аналитика» под ред. В.В. Меньшикова, том 2

 









ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.