|
Неспецифические изменения клеток при поврежденииНеспецифические (стереотипные, стандартные) изменения в клетках находят при альтерации различных видов клеток и действии на них широкого спектра патогенных агентов: гипоксии; ацидоза; чрезмерной активации свободнорадикальных и перекисных реакций; денатурации молекул белка; повышения проницаемости клеточных мембран; дисбаланса ионов и воды. Выявление конкретного спектра выраженных в разной мере специфических и неспецифических изменений в клетках органов и тканей даёт возможность судить о характере и силе действия патогенного фактора, о степени и масштабе повреждения, а также об эффективности (или неэффективности) применяемых для лечения медикаментозных и немедикаментозных средств. Обратимые повреждения после прекращения действия патогенного агента не приводят к гибели клеток. Возникающие при этом нарушения внутриклеточного гомеостаза обычно незначительны и временны. Их можно устранить благодаря активизации внутри- и внеклеточных защитно-компенсаторно-приспособительных механизмов, что способствует восстановлению жизнедеятельности клетки. Необратимые повреждения клеток приводят к выраженным и стойким нарушениям внутриклеточного гомеостаза. Они не могут быть устранены даже максимальной активизацией защитно-компенсаторно-приспособительных механизмов в ещё оставшихся жизнеспособными внутри- и внеклеточных структурах. Некроз — собственно смерть повреждённой клетки, сопровождающаяся необратимым прекращением её жизнедеятельности. Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Некроз, как правило, сопровождается воспалительной реакцией. Паранекроз и некробиоз. Некрозу предшествуют паранекроз (метаболические и структурные изменения ещё обратимы) и некробиоз. На этапе некробиоза патогенные изменения приобретают необратимый характер и приводят к некрозу. Основные звенья патогенеза некроза те же, что и при повреждении клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов в клетке). Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизис) при помощи лизосомных ферментов и свободных радикалов. • Гидролиз внутриклеточных компонентов и межклеточного вещества происходит под влиянием ферментов лизосом альтерированных клеток. Высвобождению лизосомных ферментов способствует развитие внутриклеточного ацидоза. • Деструкция повреждённых компонентов клеток осуществляется при участии активных форм кислорода и свободных радикалов. Известны факты интенсификации свободнорадикальных и липопероксидных реакций при остром воспалении, механическом повреждении, на определённых этапах инфаркта (частной формы некроза, развивающегося вследствие нарушения кровоснабжения ткани), опухолевого роста (сопровождается гибелью большого числа как злокачественных, так и окружающих нормальных клеток) и других патологических процессах. Эти два механизма обеспечивают саморазрушение структур клетки (аутолиз). Разрушение повреждённых и некротизированных клеток происходит и при участии других клеток — фагоцитов, а также микроорганизмов. В отличие от аутолитического распада, последний механизм обозначают как гетеролитический.
31. Механизмы повреждения клеточных мембран и ферментов клетки. Особенности патогенеза свободно-радикального повреждения и гибели клетки. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов. а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты. Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН2, НАДН2, липоевая кислота, продукты метаболизма простагландинов и катехоламинов. Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О2-.), гидроксильного радикала (ОН.), перекиси водорода (Н2О2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер. Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы. б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных). В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов. в). Внедрение амфифильных соединений в липидную фазу мембран. В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.
32. Механизмы гипоксического повреждения и гибели клетки. гипоксическое повреждение. Чаще всего оно обусловлено окклюзией артерий. При этом изначально гипоксия воздействует на аэробное дыхание клетки — окислительное фосфорилирование в митохондриях. В связи с тем что напряжение кислорода в клетке снижается, прекращается окислительное фосфорилирование, а образование АТФ уменьшается или останавливается. Исчезновение АТФ ведет к быстрому набуханию (отеку) клетки — одному из ранних проявлений ишемического повреждения. Отек клетки обусловлен нарушением регуляции объема клетки плазматической мембраной. Баланс между содержимым клетки и окружающей ее средой обеспечивается энергетически зависимым натриевым насосом, который поддерживает концентрацию калия внутри клетки значительно более высокой, чем внеклеточная. Наблюдается отделение рибосом от мембран гранулярной эндоплазматической сети и диссоциация полисом в моносомы. На поверхности клеток могут образовываться "волдыри", а клетки, имеющие на поверхности микроворсинки, их утрачивают (эпителий проксимальных канальцев почек). В цитоплазме и вне клеток появляются "миелиновые фигуры", образующиеся из цитоплазмы и мембран органелл. Митохондрии набухают, а эндоплазматическая сеть остается расширенной. Необратимые изменения морфологически ассоциируются с выраженной вакуолизацией митохондрий, повреждением плазматических мембран и набуханием лизосом. Вслед за гибелью клетки ее компоненты прогрессивно разрушаются, и происходит выброс ферментов клетки во внеклеточное пространство. Умершие клетки образуют массы, состоящие из фосфолипидов в виде «миелиновых фигур», которые подвергаются фагоцитозу и разрушаются до жирных кислот. Проникновение ферментов сквозь поврежденную клеточную мембрану, а затем в сыворотку крови позволяет клинически определять параметры смерти клетки. Например, сердечная мышца содержит трансаминазы, лактатдегидрогеназу и креатинкиназу. Повышение содержания этих ферментов в сыворотке крови является клиническим критерием инфаркта миокарда (смерти кардиомиоцитов). ■ Таким образом, основными признаками необратимости повреждения клетки служат невосстановимые повреждения митохондрий, приводящие к потере АТФ, а также развитие глубоких повреждений плазматических мембран, в основе которых лежит ряд биохимических механизмов. Во-первых, в некоторых ишемизированных тканях, например печени, необратимое ишемическое повреждение сопровождается заметным уменьшением содержания фосфолипидов в клеточной мембране, которое происходит под действием кальцийзависимых фосфолипаз. Во-вторых, активация протеаз, обусловленная повышением концентрации кальция в цитозоле, ведет к повреждению цитоскелета, выполняющего роль якоря между плазматической мембраной и внутренним содержимым клетки. В результате во время набухания клетки происходит отслойка клеточной мембраны от цитоскелета, что делает мембрану более податливой к растяжению и разрыву. В-третьих, при ишемии появляется небольшое количество высокотоксичных свободных радикалов кислорода. Итак, основными механизмами гибели клетки при гипоксии являются нарушение окислительного фосфорилирования, приводящее к недостаточности АТФ, повреждение мембран клетки, а важнейшим медиатором необратимых биохимических и морфологических изменений является кальций (схема 1). Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|