Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Статическое и астатическое регулирование





Если на управляемый процесс действует возмущение f, то важное значение имеет статическая характеристика САУ в форме y = F(f) при yo = const. Возможны два основных вида этих характеристик (рис.3.7.). В соответствии с тем, какая из двух характеристик свойственна для данной САУ (рис.3.7а), различают статическое (рис.3.7.б), и астатическое (рис.3.7.в), регулирование.

Рассмотрим систему регулирования уровня воды в баке (рис.3.8). Возмущающим фактором является поток Q воды из бака. Пусть при Q = 0 имеем y = yo, ε = 0. ЗУ системы настраивается так, чтобы вода при этом не поступала. При Q ≠ 0 уровень воды понижается (ε ≠ 0), поплавок опускается и открывает заслонку, в бак начинает поступать вода.

 

Рисунок 3.7 – Статическое и астатическое регулирование в САУ.

 

Новое состояние равновесия достигается при равенстве входящего и выходящего потоков воды. Но в любом случае при Q ≠ 0 заслонка должна быть обязательно открыта, что возможно только при ε ≠ 0. Причем, чем больше Q, тем при больших значениях ε устанавливается новое равновесное состояние.

 

 

Рисунок 3.8 – САУ регулирования воды в баке.

 

Статическая характеристика САУ имеет характерный наклон (рис.3.7б.). Это есть пример статического регулирования. Для получения статического регулирования все звенья САР должны быть статическими. Статические регуляторы работают при обязательном отклонении ε регулируемой величины от требуемого значения. Это отклонение тем больше, чем больше возмущение f. Это заложено в принципе действия регулятора и не является его погрешностью, поэтому данное отклонение называется статической ошибкой регулятора. Чем больше коэффициент передачи регулятора Kр, тем на большую величину откроется заслонка при одних и тех же значениях ε, обеспечив в установившемся режиме большую величину потока Q.

Это значит, что на статической характеристике одинаковым значениям ε при больших Kр будут соответствовать большие значения возмущения Q, статическая характеристика САУ пойдет более полого. Поэтому, чтобы уменьшить статическую ошибку, надо увеличить коэффициент передачи регулятора.

Статизм d САР показывает, насколько сильно значение регулируемой величины отклоняется от требуемого значения при действии возмущений, и равен тангенсу угла наклона статической характеристики, построенной в относительных единицах (рис.3.9.):

d = tg(α) = (y/yн)/(f/fн),

где y = yн, f = fн - точка номинального режима САУ. При достаточно больших значениях Kp имеем d1/Kp.

В некоторых случаях статическая ошибка недопустима, тогда переходят к астатическому регулированию, при котором регулируемая величина в установившемся режиме принимает точно требуемое значение независимо от величины возмущающего фактора. Статическая характеристика астатической САУ не имеет наклона (рис.3.7в.).

Возможные неточности относятся к погрешностям конкретной системы и не являются закономерными.

Для того, чтобы получить астатическое регулирование, необходимо в регулятор включить астатическое звено, например ИД, между ЧЭ и УО (рис.3.10.).

Если уровень воды понизится, то поплавок переместит движок потенциометра на величину ΔL, за счет этого появится разность потенциалов Δφ ≠ 0 и ИД начнет поднимать заслонку до тех пор, пока Δφ не уменьшится до нуля, а это возможно только при y = yo. При поднятии уровня воды разность потенциалов сменит знак и двигатель будет вращаться в противоположную сторону, опуская заслонку.

 

Рисунок 3.9 – К понятию статизма d.

 

Достоинства и недостатки статического и астатического регулирования:

- статические регуляторы обладают статической ошибкой;

- астатические регуляторы статической ошибки не имеют, но они более инерционны, сложны конструктивно и более дороги.

Обеспечение требуемой статической точности регулирования является первой основной задачей при расчете элементов САУ.

 

Рисунок 3.10 – Регулирование воды в баке астатическим регулятором.

Динамический режим САУ

Уравнение динамики САУ

Установившийся режим не является характерным для САУ. Обычно на управляемый процесс действуют различные возмущения, отклоняющие управляемый параметр от заданной величины. Процесс установления требуемого значения управляемой величины называется регулированием. Ввиду инерционности звеньев регулирование не может осуществляться мгновенно.

Рассмотрим САР, находящуюся в установившемся режиме, который характеризуется значением выходной величины y = yo. Пусть в момент t = 0 на объект воздействовал какой - либо возмущающий фактор, отклонив значение регулируемой величины у. Через некоторое время регулятор вернет САР к начальному состоянию (рис.3.11.). Если регулируемая величина изменяется во времени по апериодическому закону, то процесс регулирования называется апериодическим.

При резких возмущениях возможен колебательный затухающий процесс (рис.3.12а.). Существует и такая вероятность, что по истечении некоторого времени Тр в системе установятся незатухающие колебания регулируемой величины – незатухающий колебательный процесс (рис.3.12б.). Последний вид - расходящийся колебательный процесс (рис.3.12в.).

 

 

 

Рисунок 3.11 – Динамика статических и астатических САР

после возмущения.

 

 

 

Рисунок 3.12 – Колебательные процессы в САР.

 

Таким образом, основным режимом работы САУ считается динамический режим, характеризующийся протеканием в ней переходных процессов. Поэтому второй основной задачей при разработке САУ является анализ динамических режимов работы САУ.

Поведение САУ или любого ее звена в динамических режимах описывается уравнением динамики y(t) = F(u, f, t), характеризующим изменение величин во времени. Как правило, это дифференциальное уравнение или система дифференциальных уравнений. Поэтому основным методом исследования САУ в динамических режимах является метод решения дифференциальных уравнений. Порядок дифференциальных уравнений может быть довольно высоким, то есть зависимостью связаны как сами входные и выходные величины u(t), f(t), y(t), так и скорости их изменения, ускорения и т.д. Поэтому уравнение динамики в общем виде можно записать так:

F(y, y', y″,..., y(n), u, u', u″,..., u(m), f, f', f″,..., f(k)) = 0,

где: y', y″,..., y(n), u, u', u″,..., u(m), f, f', f″,..., f(k)) – соответственно: ' – первые; ″ – вторые; n, m, k – производные величин.

Передаточная функция

В ТАУ часто используют операторную форму записи дифференциальных уравнений. При этом вводится понятие дифференциального оператора p = d/dt так, что dy/dt = py, а pn = dn/dtn. Это лишь другое обозначение операции дифференцирования. Обратная дифференцированию операция интегрирования записывается как 1/p. В операторной форме исходное дифференциальное уравнение записывается как алгебраическое:

 

aop(n)y + a1p(n-1)y +... + any = (aop(n) + a1p(n-1) +... + an) y = (bop(m) + b1p(m-1) +... + bm) u

 

Некоторые правила операционного исчисления математики применимы к операторной форме записи уравнения динамики. Так, оператор p можно рассматривать в качестве сомножителя без права перестановки, то есть

py ≠ yp.

Его можно выносить за скобки и т.п. Поэтому уравнение динамики можно записать также в виде:

Дифференциальный оператор W(p) называют передаточной функцией. Она определяет отношение выходной величины звена к входной в каждый момент времени: W(p) = y(t)/u(t), поэтому ее еще называют динамическим коэффициентом усиления. В установившемся режиме d/dt = 0, то есть p = 0, поэтому передаточная функция превращается в коэффициент передачи звена

K = bm/an.

Знаменатель передаточной функции

D(p) = (aop(n) + a1p(n-1) +... + an)

называют характеристическим уравнением. Его корни, то есть значения p, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функции.

Числитель

K(p) = bopm + b1pm - 1+... + bm

называют операторным коэффициентом передачи. Его корни, при которых K(p) = 0 и W(p) = 0, называются нулями передаточной функции.

Звено САУ с известной передаточной функцией называется динамическим звеном. Оно изображается прямоугольником, внутри которого записывается выражение передаточной функции. То есть это обычное функциональное звено, функция которого задана математической зависимостью выходной величины от входной в динамическом режиме.

Для звена с двумя входами и одним выходом должны быть записаны две передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена в динамическом режиме, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин.

Например, одним из динамических звеньев является интегратор. Его передаточная функция Wи(p) = 1/p. Схема САУ, составленная из динамических звеньев, называется структурной.

 

 







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.