|
ПОСТРОЕНИЕ КРИВОЙ ПЕРЕХОДНОГО ПРОЦЕССА В СИСТЕМАХ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯОбщие соображения Дифференциальное уравнение обыкновенной линейной системы автоматического регулирования, записанное для ошибки регулирования, согласно (5.2) имеет вид
где задающее воздействие и f(t) — возмущающее воздействие. Решение линейного дифференциального уравнения с постоянными коэффициентами (7.1) будет
где
причем С1,..., Сп — произвольные постоянные, определяемые из начальных условий процесса, а р1,..., рп — корни характеристического уравнения D (р) = 0. Выражение (7.3) записано для случая отсутствия нулевых и кратных корней. Частное, или вынужденное решение Полным решением (7.2) описывается процесс регулирования в линейной системе (общий случай возмущенного движения системы). Первая часть этого-решения Исходное дифференциальное уравнение системы может быть записано, также для регулируемой величины Необходимо обратить внимание на следующее важное обстоятельство. Частное решение Следовательно, если имеется дифференциальное уравнение то частное решение определяющее установившийся процесс в системе, будет иметь три слагаемых, каждое из которых определяется частным решением одного из уравнений:
Несколько иначе обстоит дело с определением переходной составляющей. В решении для переходной составляющей (7.3) произвольные постоянные С1,..., Сп должны вычисляться по начальным условиям обязательно с использова-нием полного выражения решения (7.2), т. е. при исследовании переходных процессов в системах автоматического регулирования всегда надо оговаривать соответствующие внешние условия — задавать g(t) и f(t). Если переходный процесс ищется как решение однородного уравнения
![]() ![]() ![]() Входная функция первого типа часто встречается в системах автоматического регулирования и представляет собой внезапный скачок возмущающего воздействия на некоторую постоянную величину, например увеличение тока нагрузки генератора, увеличение момента нагрузки двигателя и т. п. Реакция системы на такое воздействие, построенная для регулируемой величины или для ошибки, отличающихся только знаками
Воздействие второго типа является характерным для следящих систем воспроизведения угла, когда командная ось внезапно начинает двигаться с постоянной скоростью. Возможно изучение поведения системы регулирования и в том случае, когда входное воздействие представляет собой не детерминированную (определенную), а случайную функцию времени. Этот вопрос будет рассмотрен в главе 11. Вторая трудность — непринципиального характера — заключается в том, что обычно системы регулирования описываются дифференциальными уравнениями сравнительно высокого порядка. Это усложняет практические расчеты; потому для облегчения задачи построения кривой переходного процесса во многих случаях приходится пользоваться приближенными методами, а также применять вычислительные устройства непрерывного и дискретного действия. Для построения кривой переходного процесса часто используют численные и графические методы решения дифференциальных уравнений. Таких методов существует много. Применительно к задачам теории автоматического регулирования наиболее удобным оказывается численно-графический метод, разработанный Д. А. Башкировым [98, 121]. Важным достоинством этого метода является то, что он без заметных усложнений может применяться к уравнениям с переменными во времени параметрами и к нелинейным уравнениям. Кроме того, метод Башкирова позволяет с одинаковой простотой строить процессы регулирования при любых заданных внешних воздействиях, в том числе и заданных графически или в виде таблиц. Для получения переходных процессов с большим успехом и весьма широко применяются также вычислительные машины. Различаются вычислительные машины непрерывного и дискретного (цифровые) действия. Они строятся на электронных, полупроводниковых и электромеханических элементах. Для сложных автоматических систем в настоящее время этому методу отдается предпочтение. Важно отметить, что при использовании вычислительных машин часто можно обходиться без составления дифференциальных уравнений тех звеньев автоматической системы, для которых имеются действующие макеты. Тогда для остальной части звеньев набираются их дифференциальные уравнения на вычислительной машине, к которой подключаются имеющиеся действующие макеты. Это свойство можно использовать для испытания и настройки регуляторов в лабораторных условиях. Ниже будет рассмотрена часть наиболее распространенных методов построения кривой переходного процесса. К ним относятся метод непосредственного решения линейных дифференциальных уравнений или так называемый классический метод, использование преобразований Фурье, Лапласа и Карсона — Хевисайда, метод трапецеидальных вещественных частотных характеристик и использование вычислительных машин. В дальнейшем изложении будем рассматривать построение переходного процесса для ошибки
![]() ![]() Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... ![]() Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ![]() ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|