|
ПРИНЦИПЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯСтр 1 из 8Следующая ⇒ ЭЛЕМЕНТЫ АВТОМАТИЧЕСКИХ СИСТЕМ
Из каких элементов состоят автоматические системы? — Измерительные устройства. — Потенциометрические и гироскопические датчики. — Измеритель угла рассогласования на сельсинах. — Что такое усилитель? — Электронные и полупроводниковые усилители. — Из каких каскадов состоят электронные усилители автоматических систем? — Модуляторы и демодуляторы. — Магнитные и электромашинные усилители. — Общая характеристика исполнительных устройств. — Электрические двигатели постоянного тока. — Двухфазные асинхронные электродвигатели. — Гидравлические и пневматические приводы. — Что такое пневмоника?
ФУНКЦИОНАЛЬНАЯ СХЕМА Измерительные устройства Чтобы выработать сигнал ошибки, измерительное устройство должно включать (рис. 12): чувствительный, или воспринимающий, элемент, измеряющий действительное значение регулируемой величины x вых; элемент сравнения, который вырабатывает отклонение (рассогласование) Однако такое разделение измерительного устройства на элементы является условным, так как измерительное устройство в конструктивном отношении часто представляет собой единое целое, в котором трудно выделить отдельные элементы. Примером этого может служить измерительное устройство системы регулирования уровня жидкости (рис. 13, а), в котором заданное значение уровня
где
Согласно требованиям, предъявляемым к измерителям, выходной сигнал измерительного устройства должен быть пропорциональным измеряемой величине. Кроме того, выходной сигнал должен реагировать на знак измеряемой величины. Оба эти требования отражаются линейной статической характеристикой измерительного устройства (рис. 13, б). Коэффициент
Коэффициент
Для измерительных устройств очень важно, чтобы выходной сигнал копировал изменения во времени измеряемой величины. Практически же вследствие инерционности измерительного элемента или датчика выходной сигнал отстает от входного. Это отставание характеризует динамические свойства измерительного элемента и должно быть минимальным или вообще отсутствовать. Как оцениваются динамические свойства элементов, мы расскажем в пятой беседе. А сейчас рассмотрим наиболее типовые измерительные элементы и датчики.
Рассмотрим работу потенциомет-рического датчика. Датчик питается постоянным по величине напряжением
Где В реальных условиях датчик работает с нагрузкой Влияние нагрузки можно не учитывать, если Если потенциометрический датчик изготовлен из толстого провода, то его статическая характеристика будет ступенчатой (рис. 14, в). Ошибка ступенчатости вызывает колебания выходного напряжения с большой частотой и тем самым создает помехи. Для уменьшения этой ошибки увеличивают число витков, одновременно уменьшая диаметр провода. Рассмотренный потенциометрический датчик является однотактным, так как знаки входного перемещения и выходного напряжения в нем не меняются. Поэтому он не нашел широкого применения.
В двухтактных датчиках знак выходного напряжения изменяется при изменении знака входного перемещения. В простейшем двухтактном датчике (рис. 15, а) выходное напряжение снимается с участка между движком и средней точкой потенциометра. Недостатком данной схемы является то, что максимальное выходное напряжение равно половине напряжения питания (рис. 15, б), вследствие чего коэффициент передачи потенциометра невелик. Для устранения этого недостатка применяют мостовую схему, состоящую из двух потенциометров (рис. 16, а). Движки потенциометров механически сблокированы таким образом, что перемещаются от нейтрали на величину х, но в противоположные стороны. Входное перемещение х отсчитывается от нейтральной линии, которая делит сопротивление потенциометров пополам. При х = 0 движки находятся на нейтрали. Если потенциометрический датчик питается постоянным током, то при изменении знака х, т. е. при прохождении движков через точку х = 0, полярность выходного напряжения изменяется на обратную. При питании потенциометров переменным током будет изменяться фаза выходного напряжения на 180° по отношению к напряжению питания потенциометра. Максимальное выходное напряжение датчика с двумя потенциометрами равно напряжению питания (рис. 16, б), поэтому коэффициент передачи этого датчика в два раза выше, чем датчика с одним потенциометром.
Достоинством рассмотренных потенциометри-ческих датчиков является простота конструкции, стабильность характеристик, возможность работы как на постоянном, так и на переменном токе. К их недостаткам следует отнести недостаточную надежность из-за наличия скользящих контактов. Потенциометр и чес кие датчики часто применяют в качестве выходных частей элементов для измерения уровней жидкостей, давления, в гироско пических приборах и т. д. В частности, рассмотрим работу измерителя угла рассогласования на потенциометрических датчиках, который применяют в приборных маломощных следящих системах.
где Данная схема, по существу, является двухтактным потенциометрическим датчиком, который мы уже ранее рассмотрели. Ее недостатком является ограниченность угла поворота щеток потенциометров (менее 360°). Однако этот недостаток можно устранить, применив специальные схемы включения потенциометров. Измеритель угла рассогласования на сельсинах. Чтобы передать на расстояние некоторую угловую величину или обеспечить синхронное вращение нескольких механически не связанных осей, которые несут незначительную нагрузку (вращение шкал или индексов-стрелок), применяют сельсинную систему, работающую в индикаторном режиме (рис. 18, а). Однако для нас важно другое применение сельсинной системы — в качестве измерителя рассогласования в следящих системах. В этом случае сельсинная система работает в трансформаторном режиме (рис. 18, б). Основными элементами сельсинных систем являются: сельсин-датчик СД, сельсин-приемник СП (для индикаторного режима), сельсин-трансформатор СТ (для трансформаторного режима) и линия синхронной связи между сельсинами. К одному СД можно подключать несколько СП. Сельсин представляет собой малогабаритную электрическую индукционную машину переменного тока. Сельсины бывают контактные и бесконтактные. Рассмотрим контактный сельсин с двумя обмотками: однофазной и трехлучевой, одна из которых расположена на статоре, другая - на роторе. Причем, расположение обмоток на принцип действия сельсина не влияет. Пусть у сельсин-датчика на статоре расположена однофазная, а на роторе - трехлучевая обмотки (рис. 19, а). Однофазная обмотка питается переменным током промышленной (50 гц) или повышенной (400 - 500 гц) частоты и создает пульсирующий магнитный поток возбуждения Ф в. Этот поток пронизывает обмотки ротора и наводит в них э.д.с, амплитуда и фаза которых зависит от угла между осью обмотки возбуждения и осью соответствующей обмотки ротора. Так, в обмотке 1 наводится максимальная э.д.с.
Схема трансформаторной сельсинной системы приведена на рис.21, а. В отличие от индикаторного в трансформа-торном режиме однофазная обмотка СТ не питается, с нее снимается выходное напряжение схемы. Кроме того, ротор СТ механически связан с выходным валом следящей системы. Под действием э.д.с. роторных обмоток СД в роторных цепях сельсинов проходят токи. Эти токи создают в роторе СТ суммарный магнит-ный поток, который пронизывает однофазную обмотку СТ и наводит в ней э.д.с.
Где Данная зависимость отражает статическую характеристику измерителя угла рассогласования на сельсинах, которая, как видно из рис. 21, б, нелинейна, т.е. нет пропорциональной зависимости между
где Статическая характеристика измерителя угла рассогласования показывает, как изменяется амплитуда и фаза выходного напряжения Для повышения точности измерителя угла рассогласования применяют двухканальную систему. Кроме того, вместо сельсинов используют вращающиеся трансформаторы.
При управлении электродвигателем со стороны якоря (рис. 39, а) обмотка возбуждения питается неизменным напряжением Динамические свойства электродвигателя зависят от инерционности электромагнитных процессов, определяемых индуктивностью якоря и инерционностью механических процессов. Если индуктивность якоря невелика (в маломощных двигателях), то учитывают только инерционность механических процессов, которая зависит от момента инерции якоря. Кроме того, поскольку электродвигатель всегда связан с нагрузкой, то необходимо также учитывать и ее момент инерции. Это достигается приведением момента инерции нагрузки к валу электродвигателя. Для уменьшения инерционности уменьшают диаметр якоря, соответственно увеличивая его в длину. Инерционность электродвигателя проявляется в том, что при внезапной подаче управляющего напряжения его скорость достигает своего установившегося значения не сразу, а постепенно (рис.39, в). Так, если постоянная времени электродвигателя Т = 0,3 сек, то скорость достигнет своего установившегося значения При управлении электродвигателем со стороны обмотки возбуждения (полюсное управление) якорь питается от сети неизменным напряжением и постоянного тока (рис. 39, б). Величину тока якоря Очевидно, что можно осуществить и комбинированное управление, т. е. одновременно управлять электродвигателем как со стороны якоря, так и со стороны обмотки возбуждения.
В автоматических системах широко применяют двухфазные асинхронные электродвигатели с короткозамкнутым ротором. Мощность этих электродвигателей невелика и составляет единицы-десятки ватт. Поэтому их применяют в качестве исполнительных двигателей, например в маломощных следящих системах, интегрирующих проводах и т. п. Двухфазные асинхронные двигатели имеют на статоре обмотку управления ОУ и обмотку возбуждения ОВ, магнитные оси которых сдвинуты в пространстве на 90° (рис. 40, а). Эти обмотки создают вращающееся магнитное поле статора, и оно увлекает за собой ротор электродвигателя, скорость которого всегда меньше скорости поля. Для создания вращающегося магнитного поля ' статора необходимо, чтобы обе обмотки питались переменными токами, сдвинутыми по фазе на 90°. Если обе обмотки питаются от одной сети, то одну из обмоток (обычно обмотку возбуждения) включают через конденсатор С. Исполнительные электродвигатели должны иметь жесткую и линейную механическую характеристику. Такова, например, характеристика электродвигателя постоянного тока (рис. 40, б, кривая 1). При жесткой характеристике развиваемый электродвигателем момент незначительно изменяется с изменением скорости его вращения. Однако механическая характеристика двухфазного асинхронного электродвигателя не является линейной (рис. 40, б, кривая 2). Для того чтобы она была близка к линейной (рис. 40, б, кривая 3), ротор электродвигателя должен иметь большое активное сопротивление. Это достигают тем, что обмотку ротора изготовляют из большого числа витков тонкого провода. Особенно большое распространение получили электродвигатели, у которых ротор вообще не имеет обмотки, а выполнен в виде тонкостенного стакана из немагнитного или ферромагнитного материала. Полый ротор имеет небольшой момент инерции, и двигатели с таким ротором менее инерционны, что весьма существенно. Скорость вращения электродвигателя при неизменном напряжении на обмотке возбуждения можно регулировать изменением амплитуды или фазы управляющего напряжения. Наиболее часто применяют амплитудное управление. Реверс электродвигателя осуществляют, изменяя фазу управляющего напряжения на 180°. В автоматических системах управление двухфазным асинхронным электродвигателем осуществляют при помощи усилителя мощности с выходом на переменном токе (рис. 40, а). Обмотки возбуждения и усилитель обязательно Должны питаться от одной сети, например от одинаковых фаз трехфазной личин. Необходимый сдвиг фаз в 90° между токами в обмотках возбуждения и управления статора электродвигателя можно осуществить в усилителе. Тогда необходимость в конденсаторе С отпадает. Существенными достоинствами двухфазных асинхронных электродвигателей являются: отсутствие щеток и коллектора, малая инерционность, возможность питания от устойчивых в работе усилителей переменного тока.
ПЯТАЯ ТИПОВЫЕ ЗВЕНЬЯ ВЕСЕДА АВТОМАТИЧЕСКИХ СИСТЕМ Что такое типовое звено?— Пропорциональное (усилительное) звено.— Апериодическое звено.— Колебательное звено.— Интегрирующее звено.— Апериодическое звено как интегратор.— Дифференцирующее звено.— Идеальные и реальные звенья.— Запаздывающее звено.— Какому звену соответствует данный элемент автоматической системы?— Сравнительная оценка типовых звеньев.— Устойчивые и неустойчивые звенья. 1. КЛАССИФИКАЦИЯ ТИПОВЫХ ЗВЕНЬЕВ Во второй беседе элементы автоматических систем мы классифицировали по функциональным признакам, т.е. по назначению. Такое подразделение элементов удобно, например, при изучении устройства и взаимодействия их в АС. Однако подобная классификация не всегда целесообразна. Более удобно элементы классифицировать по их динамическим свойствам, поскольку одной из важнейших задач теории автоматического управления является изучение динамических процессов в АС. В этом случае удобен принцип классификации элементов по звеньям, являющимся своеобразными «кирпичами», из которых строится «здание» динамики автоматических систем. Динамическим звеном, или просто звеном, называется элемент (часть) автоматической системы, который имеет определенные динамические свойства. Рассмотрим в качестве примера электрическую цепь и механическую систему. Электрическая цепь (рис. 65, а) состоит из сопротивления R, емкости С и индуктивности L. При наличии внешнего напряжения и динамические процессы в электрической цепи описываются дифференциальным уравнением второго порядка
![]() где q – заряд емкости С. Механическая система (рис. 65, б) состоит из твердого тела М, пружины П и демпфера Д. При наличии внешней силы f дифференциальное уравнение динамики механической системы имеет вид
![]() где х - перемещение тела М; m - масса тела М; Таким образом, уравнения динамики электрической цепи и механической системы являются однотипными. Из этого можно сделать вывод, что динамические процессы в обеих системах, несмотря на различную их физическую природу, являются сходственными. Другими словами, электрическая цепь и механическая система являются звеньями одного типа.
«Единство природы обнаруживается в «поразительной аналогичности» дифференциальных уравнений, относящихся к разным областям явлений» *. Оказывается, что, несмотря на большое разнообразие элементов, которые отличаются между собой по физической природе, конструктивному оформлению, мощности, виду потребляемой энергии и т. д., можно выделить всего несколько типовых звеньев. За типовые звенья, по-видимому, целесообразно принять такие, которые могут служить основой для построения любых других звеньев, встречающихся на практике. Обычно за основу принимают звено, обладающее одной степенью свободы. Математические процессы в таком звене описываются дифференциальным уравнением второго порядка
![]() где Если принять это уравнение за исходное, то легко вывести уравнения различных типовых звеньев. Типовые звенья являются звеньями направленного действия: сигналы передаются звеном в одном направлении - со входа на выход. При изменении входного сигнала изменяется и выходной; если входной сигнал не меняется, не должен изменяться и выходной сигнал. Для того чтобы элемент АС отображался звеном направленного действия, необходимо учитывать нагрузку на его выходе. Так, например, во второй беседе при знакомстве с потенциометрическим датчиком мы видели, что его коэффициент передачи при холостом ходе и с нагрузкой имеет различные значения. Чтобы этот датчик можно было рассматривать как звено направленного действия, необходимо принять его коэффициент передачи с учетом нагрузки. При соединении звеньев направленного действия они сохраняют свои прежние свойства. Типовые звенья подразделяют на пропорциональные (усилительные), апериодические (инерционные), колебательные, интегрирующие, дифференцирующие и форсирующие. Несколько обособленно в этой классификации стоит запаздывающее звено, но об этом мы поговорим позднее. Основные характеристики типовых звеньев приведены в табл. 1. Теперь познакомимся с каждым типовым звеном в отдельности.
АНАЛИЗ ТИПОВЫХ ЗВЕНЬЕВ СТРУКТУРНЫЕ СХЕМЫ И ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ СИСТЕМ Общие соображения Дифференциальное уравнение обыкновенной линейной системы автоматического регулирования, записанное для ошибки регулирования, согласно (5.2) имеет вид
где задающее воздействие и f(t) — возмущающее воздействие. Решение линейного дифференциального уравнения с постоянными коэффициентами (7.1) будет
где
причем С1,..., Сп — произвольные постоянные, определяемые из начальных условий процесса, а р1,..., рп — корни характеристического уравнения D (р) = 0. Выражение (7.3) записано для случая отсутствия нулевых и кратных корней. Частное, или вынужденное решение Полным решением (7.2) описывается процесс регулирования в линейной системе (общий случай возмущенного движения системы). Первая часть этого-решения Исходное дифференциальное уравнение системы может быть записано, также для регулируемой величины Необходимо обратить внимание на следующее важное обстоятельство. Частное решение Следовательно, если имеется дифференциальное уравнение то частное решение определяющее установившийся процесс в системе, будет иметь три слагаемых, каждое из которых определяется частным решением одного из уравнений:
Несколько иначе обстоит дело с определением переходной составляющей. В решении для переходной составляющей (7.3) произвольные постоянные С1,..., Сп должны вычисляться по начальным условиям обязательно с использова-нием полного выражения решения (7.2), т. е. при исследовании переходных процессов в системах автоматического регулирования всегда надо оговаривать соответствующие внешние условия — задавать g(t) и f(t). Если переходный процесс ищется как решение однородного уравнения
![]() ![]() ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... ![]() Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|