Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Термопары из неблагородных металлов





Тип J (железо-константановая термопара)

• Не рекомендуется использовать ниже 0 °С, т.к. конденсация влаги на железном выводе приводит к образованию ржавчины;
• Наиболее подходящий тип для разряженной атмосферы;
• Максимальная температура применения – 500 °С, т.к выше этой температуры происходит быстрое окисление выводов. Оба вывода быстро разрушаются в атмосфере серы.
• Показания повышаются после термического старения.
• Преимуществом является также невысокая стоимость.

Тип Е (хромель-константановая термопара)

• Преимуществом является высокая чувствительность.
• Термоэлектрическая однородность материалов электродов.
• Подходит для использования при низких температурах.

s Тип Т (медь-константановая термопара)

• Может использоваться ниже 0 °С;
• Может использоваться в атмосфере с небольшим избытком или недостатком кислорода;
• Не рекомендуется использование при температурах выше 400 °С;
• Не чувствительна к повышенной влажности;
• Оба вывода могут быть отожжены для удаления материалов, вызывающих термоэлекрическую неоднородность.

Тип К (хромель-алюмелевая термопара)

• Широко используются в различных областях от – 100 °С до +1000 °С (рекомендуемый предел, зависящий от диаметра термоэлектрода);
• В диапазоне от 200 до 500 °С возникает эффект гистерезиса, т.е показания при нагреве и охлаждении могут различаться. Иногда разница достигает 5 °С;
• Используется в нейтральной атмосфере или атмосфере с избытком кислорода;
• После термического старения показания снижаются;
• Не рекомендуется использовать в разряженной атмосфере, т.к. хром может выделяться из Ni-Cr вывода (так называемая миграция), термопара при этом изменяет ТЭДС и показывает заниженную температуру;
• Атмосфера серы вредна для термопары, т.к. воздействует на оба электрода.

Тип N (нихросил-нисиловая термопара)

• Это относительно новый тип термопары, разработанный на основе термопары типа К. Термопара типа К может легко загрязняться примесями при высоких температурах. Сплавляя оба электрода с кремнием, можно тем самым загрязнить термопару заранее, и таким образом снизить риск дальнейшего загрязнения во время работы.
• Рекомендуемая рабочая температура до 1200 °С (зависит от диаметра проволоки).
• Кратковременная работа возможна при 1250 °С;
• Высокая стабильность при температурах от 200 до 500 °С (значительно меньший гистерезис, чем для термопары типа К);
• Считается самой точной термопарой из неблагородных металлов.

Общие советы по выбору термопар из неблагородных металлов

ниже нуля – тип Е, Т
комнатные температуры – тип К, Е, Т
до 300 °С – тип К
от 300 до 600°С – тип N
выше 600 °С – тип К или N

Термопары из благородных металлов

Тип S (платнородий-платиновая термопара)

• Рекомендуемая максимальная рабочая температура 1350 °С;
• Кратковременное применение возможно при 1600 °С;
• Загрязняется при температурах выше 900 °С водородом, углеродом, металлическими примесями из меди и железа. При содержании железа в платиновом электроде на уровне 0,1%, ТЭДС изменяется более, чем на 1 мВ (100°С) при 1200 °С и 1,5 мВ (160 °С) при 1600 °С. Такая же картина наблюдается при загрязнении медью. Таким образом, термопары нельзя армировать стальной трубкой, или следует изолировать электроды от трубки газонепроницаемой керамикой.
• Может применяться в окислительной атмосфере.
• При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
• Не рекомендуется применять ниже 400 °С, т.к ТЭДС в этой области мала и крайне не линейна.

Тип R (платнородий-платиновая термопара)

• Свойства те же, что и у термопар типа S.

Тип В (платнородий-платинородиевая термопара)

• Рекомендуемая максимальная температура рабочего диапазона 1500 °С (зависит от диаметра проволоки);
• Кратковременное применение возможно до 1750 °С;
• Может загрязняться при температурах выше 900 °С водородом, кремнием, парами меди и железа, но эффект меньше, чем для термопар типа S и R;
• При температуре выше 1000 °С термопара может загрязняться кремнием, который присутствует в некоторых видах защитных керамических материалов. Важно использовать керамические трубки, состоящие из высокочистого оксида алюминия.
• Может использоваться в окислительной среде;
• Не рекомендуется применение при температуре ниже 600 °С, где ТЭДС очень мала и не линейна.

 

Источники погрешности термопар

Принцип действия термопар и особенности преобразования и передачи сигнала приводят к следующим возможным проблемам при их эксплуатации, вызывающим ошибку в определении температуры

1. Дефекты формирования рабочего спая термопары;
2. Возникновение термоэлектрической неоднородности по длине термоэлектродов и изменение градуировочной характеристики термопары;
3. Электрическое шунтирование проводников изоляцией и возможное возникновение гальванического эффекта;
4. Тепловое шунтирование;
5. Электрические шумы и утечки.

Формирование спая

Существует много способов формирования рабочего спая термопары: механическое скручивание, пайка, сварка и т.д. При сварке в спай добавляется третий метал, но т.к. температуры проводников, исходящих из спая одинаковы, это не может привести к какой-либо погрешности. Проблема заключается в том, что третий метал, как правило, имеет более низкую температуру плавления и при высоких температурах спай может разорваться. Более того, может происходить загрязнение электродов чужеродным испаряющимся металлом. Поэтому рекомендуется производить сварку рабочего спая. Однако процесс сварки тоже требует особого внимания, т.к. перегрев может повредить термопарную проволоку и газ, используемый для сварки, может диффундировать в проволоку. Дефектная сварка может привести в разрыву спая при эксплуатации. В программном обеспечении, используемом для считывания и обработки сигнала термопары всегда есть специальный тест на разрыв спая.

Образование термоэлектрической неоднородности. Искажение градуировочной характеристики термопары

Это наиболее серьезный и трудно диагностируемый источник погрешности, т.к. результат отсчета ТЭДС может показаться вполне приемлемым и в то же время быть ошибочным. Термоэлектрическая неоднородность может быть результатом диффузии примесей из окружающей атмосферы при высоких температурах, высокотемпературным отжигом или механической обработкой электродов. Она может образоваться в результате протягивания электродов, неосторожного обращения, ударов и вибраций, вызывающих напряжения в проволоке. Изменение состава сплава может наблюдаться на отдельном участке проволоки, находящейся длительное время в зоне резкого температурного градиента. Однако неоднородность влияет на изменение градуировочной характеристики только в том случае, если она попадает в зону температурного градиента при измерении. Чем больше градиент температуры, тем больше погрешность, возникающая из-за неоднородности. Один из способов уменьшения данной погрешности – сделать более плавным изменение температуры на длине термоэлектрода, например, используя металлические рукава и чехлы.







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2025 zdamsam.ru Размещенные материалы защищены законодательством РФ.