|
Метод минимизации по картам КарноДанный метод минимизации применим для функций с числом переменных не более 6 и удобен для ручной минимизации, когда человек видит те комбинации, которые можно объединить вместе. Рассмотрим его на конкретном примере. Пример 2. Рассмотрим функцию Множество переменных разобьем на две группы. Одной группе сопоставим строки таблицы, второй — столбцы, так чтобы каждой клетке соответствовала комбинация переменных из этих групп. Карта Карно для нее имеет вид табл. 5. Таблица 5 Карта Карно для f1
При составлении карты Карно строки именуются всевозможными комбинациями значений переменных первой группы так, чтобы расстояние между соседними комбинациями было равно 1. Для нашего случая 0 0® 0 1® 1 1® 10 (при каждом последующем переходе изменяется только подчеркнутый символ). Аналогично именуются столбцы таблицы. Заполнение карты производится по таблице соответствия исходной функции. В примере конъюнкции x1x2x3 соответствует клетка 11/1, а клетка 11/0 и так далее. В данной таблице каждая единица имеет порядковый индекс, который соответствует порядковому номеру данной компоненты в исходной функции (расстановка этих индексов совершенно не обязательна и здесь приведена для лучшего понимания). Для минимизации необходимо попарно “склеить” рядом стоящие единицы, имеющие хотя бы одну общую компоненту. При этом надо стремиться “склеить” в один набор как можно больше клеток. В данном примере мы можем “склеить” 11,12,13,14 вместе. Это запишется как x1, так как содержимое всех этих клеток зависит только от x1 и не меняется при изменении x2 или x3. На следующем шаге склеим 11 и 15. В результате получим x2x3. Рассуждения аналогичны: при изменении x1 изменения ячеек с 11 и 15 не происходит. Результирующей минимальной записью исходной функции будет Пример 3. Минимизируем функцию пяти переменных: Карта Карно для нее приведена в табл.6. Таблица 6 Карта Карно для f2
Если в конъюнкции переменная не присутствует, то 1 ставится во все клетки, удовлетворяющие присутствующим переменным. Так, например, первой конъюнкции соответствует две клетки: 100/00 и 100/01. Минимизация приводит к формуле Пример 4. Рассмотрим функцию Таблица 7 Карта карно для f3
По карте Карно в табл.7 хорошо видно, что для данной функции существует две минимальных формы: 37. Реле́ (фр. relais) — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин. Различают электрические, механические и тепловые реле. Существует класс электронных полупроводниковых приборов именуемых оптореле (твердотельное реле), но он в данной статье не рассматривается. Реле-прерыватель указателей поворота и аварийной сигнализации автомобиля (ВАЗ-2109) В электронной схемотехнике иногда электронные блоки с функцией переключения цепи по изменению какого-либо физического параметра также называют реле. Например, фотореле, реле контроля фаз или реле-прерыватель указателей поворота автомобиля.
Устройство Принцип действия реле Основные части электромагнитного реле: электромагнит, якорь и переключатель. Электромагнит представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала. Якорь — пластина из магнитного материала, через толкатель управляющая контактами. Историческая справка Телеграфное поляризованное реле Первое реле было изобретено американцем Джозефом Генри в 1831 г. и базировалось на электромагнитном принципе действия, следует отметить, что реле Дж. Генри было не коммутационным. Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом. Как самостоятельное устройство, реле впервые упомянуто в патенте на телеграф Самюэля Морзе. Классификация реле
Обозначение на схемах На схемах реле обозначается следующим образом: 1 — обмотка реле (A1, A2 — управляющая цепь), 2 — контакт замыкающий, 3 — контакт размыкающий, 4 — контакт замыкающий с замедлителем при срабатывании, 5 — контакт замыкающий с замедлителем при возврате, 6 — контакт импульсный замыкающий, 7 — контакт замыкающий без самовозврата, 8 — контакт размыкающий без самовозврата, 9 — контакт размыкающий с замедлителем при срабатывании, 10 — контакт размыкающий с замедлителем при возврате, 11 — общий контакт, 11-12 — нормально замкнутые контакты, 11-14 — нормально разомкнутые контакты. На некоторых схемах ещё можно встретить обозначения по ГОСТ 7624-55[1]. Особенности работы Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой. Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты. В исходном положении якорь удерживается пружиной. При подаче управляющего сигнала электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения управляющего напряжения пружина возвращает якорь в исходное положение. В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех. Управляемая цепь электрически никак не связана с управляющей (такая ситуация часто обозначается в электротехнике как сухой контакт). Более того в управляемой цепи величина тока может быть намного больше чем в управляющей. Источником управляющего сигнала могут быть: слаботочные электрические схемы (например дистанционного управления), различные датчики (света, давления, температуры и т. п.), и другие приборы которые на выходе имеют минимальные значения тока и напряжения. Таким образом, реле по сути выполняют роль дискретного усилителя тока, напряжения и мощности в электрической цепи. Это свойство реле, кстати, имело широкое применение в самых первых дискретных (цифровых) вычислительных машинах. Впоследствии реле в цифровой вычислительной технике были заменены сначала лампами, потом транзисторами и микросхемами — работающими в ключевом (переключательном) режиме. В настоящее время имеются попытки возродить релейные вычислительные машины с использованием нанотехнологий. В настоящее время в электронике и электротехнике реле используют в основном для управления большими токами. В цепях с небольшими токами для управления чаще всего применяются транзисторы или тиристоры. При работе со сверхбольшими токами (десятки-сотни ампер; например, при очистке металла методом электролиза) для исключения возможности пробоя контакты управляемой цепи исполняются с большой контактной площадью и погружаются в масло (так называемая «масляная ячейка»). Реле до сих пор очень широко применяются в бытовой электротехнике, в особенности для автоматического включения и выключения электродвигателей (пускозащитные реле), а также в электрических схемах автомобилей. Например, пускозащитное реле обязательно имеется в бытовом холодильнике, а также в стиральных машинах. В этих устройствах реле намного надёжнее электроники, так как оно устойчиво к броску тока при запуске электродвигателя и, особенно, к сильному броску напряжения при его отключении.
Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|