|
НЕПРЕРЫВНО-ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ(D -СХЕМЫ)
Рассмотрим особенности непрерывно-детерминированного подхода на примере использования в качестве математических моделей дифференциальных уравнений. Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной или нескольких переменных, причем в уравнение входят не только функции, но и их производные различных порядков. Если неизвестные — функции многих переменных, то уравнения называются уравнениями в частных производных, в противном случае при рассмотрении функции только одной независимой переменной уравнения называются обыкновенными дифференциальными уравнениями. Основные соотношения. Обычно в таких математических моделях в качестве независимой переменной, от которой зависят неизвестные искомые функции, служит время t. Тогда математическое соотношение для детерминированных систем (2.6) в общем виде будет
где Так как математические схемы такого вида отражают динамику изучаемой системы, т. е. ее поведение во времени, то они называются D-схемами (англ. dynamic) [4, 37]. В простейшем случае обыкновенное дифференциальное уравнение имеет вид
Наиболее важно для системотехники приложение D-схем в качестве математического аппарата в теории автоматического управления. Для иллюстрации особенностей построения и применения D-схем рассмотрим простейший пример формализации процесса функционирования двух элементарных систем различной физической природы: механической
где Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Например, период колебания маятника Аналогично, процессы в электрическом колебательном контуре описываются обыкновенным дифференциальным уравнением где Из этого уравнения можно получить различные оценки характеристик процесса в колебательном контуре. Например, период характеристических колебаний Очевидно, что, введя обозначения
где Таким образом, поведение этих двух объектов может быть исследовано на основе общей математической модели (2.9). Кроме того, необходимо отметить, что поведение одной из систем может быть проанализировано с помощью другой. Например, поведение маятника (системы Если изучаемая система S, т. е. маятник или контур, взаимодействует с внешней средой E, то появляется входное воздействие x (t) (внешняя сила для маятника и источник энергии для контура) и непрерывно-детерминированная модель такой системы будет иметь вид С точки зрения общей схемы математической модели (см. § 2.1) x (t)является входным (управляющим) воздействием, а состояние системы S в данном случае можно рассматривать как выходную характеристику, т. е. полагать, что выходная переменная совпадает с состоянием системы в данный момент времени y=z. Возможные приложения. При решении задач системотехники важное значение имеют проблемы управления большими системами. Следует обратить внимание на системы автоматического управления — частный случай динамических систем, описываемых D-схемами и выделенных в отдельный класс моделей в силу их практической специфики [24, 43]. Описывая процессы автоматического управления, придерживаются обычно представления реального объекта в виде двух систем: управляющей и управляемой (объекта управления). Структура многомерной системы автоматического управления общего вида представлена на рис. 2.2, где обозначены эндогенные переменные: Современная управляющая система — это совокупность программно-технических средств, обеспечивающих достижение объектом управления определенной цели. Насколько точно объект управления достигает заданной цели, можно судить для одномерной системы по координате состояния Системы, для которых ошибки управления Если система устойчива, то представляют практический интерес поведение системы во времени, максимальное отклонение регулируемой переменной
Пример 2.1. Рассмотрим одноканальную систему автоматического управления
где Тогда уравнение (2.10) можно линеаризовать, разложив функцию
Так как полученное уравнение (2.11) приближенно описывает рассматриваемый процесс, то производные вычисляют при некоторых фиксированных значениях входящих в него переменных, т. е. получается система с постоянными коэффициентами. Кроме того, уравнения получаются линейными относительно Таким образом, для линейных систем автоматического управления, т. е. для систем, описываемых линейными дифференциальными уравнениями, можно записать
В уравнении (2.12) для простоты предполагается, что точки приложения возмущающих воздействий совпадают с входом системы. Для решения (2.12) можно воспользоваться, например, операторным методом, заменяя дифференциальное уравнение алгебраическим.
Таким образом, использование D-схем позволяет формализовать процесс функционирования непрерывно-детерминированных систем S и оценить их основные характеристики, применяя аналитический или имитационный подход, реализованный в виде соответствующего языка для моделирования непрерывных систем или использующий аналоговые и гибридные средства вычислительной техники. ![]() ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|