Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Градиент, дивергенция, циркуляция, вихрь.





Силы, действующие в жидкости.

В жидкостях могут существовать только распределенные силы: массовые (объемные) и поверхностные.

1) Массовые силы действуют на каждую точку выделенного объема τ и пропорциональны массе частиц. Например, сила тяжести, центробежное ускорение, сила электростатического напряжения, сила Кориолиса и т.д.

Массовые силы характеризуются вектором плотности массовых сил:

,

который представляет собой предел отношения главного вектора массовых сил к массе частицы при стремлении массы к нулю.

В проекциях на координатные оси он может быть записан:

X, Y, Z – проекции на координатные оси.

2) Поверхностные силы характеризуются напряжениями:

- это предел отношения главного вектора поверхностной силы, приложенного к и величине этой площадки при стремлении ее к нулю. Величина напряжения зависит от выбора направления площадки.

- нормальное напряжение

- касательное напряжение

Методы изучения движения жидкости.

Существует два метода изучения движения жидкости: метод Эйлера и метод Лагранжа.

1. Метод Лагранжа: выделяется частица в движущейся жидкости и исследуется ее траектория в зависимости от координат и времени. (1) (2)

a, b, c – это постоянные, которые определяют положение точки в начальный момент времени.

2. Метод Эйлера: задается метод распределения скорости в потоке в зависимости от координат и времени:

(3)

x, y, z –переменные Эйлера.

Чтобы определить скорости в какой-либо точке надо задать ее координаты. Поле ускорений потока можно получить если продифференцировать систему (3):

Получили систему, описывающую поле ускорений.

Локальные ускорения, показывающие как изменяется скорость в какой-либо точке потока с течением времени ( ).



Конвективные ускорения (все остальное в правой части), связанные с перемещением точки или среды (т.е. с конвекцией). Течение может быть стационарным или нестационарным (изменяется во времени). Для стационарных задач локальные ускорения равны нулю. Самые простые течения стационарные, плоские и одномерные. Для стационарной и плоской задачи исследуется течение только по двум координатам. Если рассматривается одномерная стационарная задача, тогда:

Траектория, линия тока, трубка тока, струя.

Траектория – это линия, изображающая путь пройденный частицей за определенный промежуток времени.

Линия тока – это мгновенная векторная линия, в каждой точке которой в данный момент времени касательная по направлению совпадает с вектором скорости. В стационарных задачах линии тока и траектории совпадают, т.к. нормальная составляющая скорости к линии тока равна нулю, жидкость через линию тока не перетекает. В плоских течениях количество жидкости между двумя линиями тока в любых сечениях будет одинаково. Если линии тока приближаются, то скорость потока увеличивается, и наоборот. Через каждую точку в потоке можно провести только одну линию тока, исключение составляют особые точки: критические точки. А и В – это критические точки. Поверхность непроницаемого тела – поверхность тока, а линии тока, расположенные на поверхности называется нулевыми линиями тока.

Если в жидкости провести замкнутый контур и через каждую точку провести линию тока, получим поверхность тока. Жидкость внутри поверхности называется трубкой тока. Через поверхность тока жидкость не перетекает, следовательно через каждое сечение трубки тока проходит одно и то же количество жидкости. Если через каждую точку контура провести траекторию, то часть жидкости, которая ограничена поверхностью траектории называется струей. Струя совпадает с трубкой тока в стационарном течении.

Градиент, дивергенция, циркуляция, вихрь.

1. Градиент.

Рассмотрим действие векторного оператора Гамильтона на скалярную функцию φ. Скалярная величина – это параметр, которому нельзя придать направление.

Градиент скалярной функции – это вектор направленный по нормали к линии постоянного значения в сторону возрастания функции и модуль его равен частной производной от функции по направлению указанной нормали.

2. Дивергенция.

Рассмотрим скалярное умножение векторного оператора и двух величин скорости:

Дивергенция является скалярной величиной, показывает расхождение вектора скорости, определяет закон относительного изменения объема. Например, если течение стационарное и жидкость несжимаемая, то при в жидкости отсутствуют источники или стоки. При имеется источник, при имеется сток. Уравнение часто используется для замыкания системы уравнений движения несжимаемой жидкости и является уравнением сплошности.

3. Циркуляция.

Характеризует интенсивность вращательного движения жидкости.

Вычисляется, например, по контуру АВ:

- элемент контура АВ

 

 

4. Вихрь вектора скорости.

Рассмотрим векторное произведение оператора на вектор скорости:

Рассмотрим вращение точки вокруг оси, проходящей через начало координат с угловой скоростью .

Если в жидкости , это указывает на наличие вращающихся объемов, вихрей жидкости. Интерес представляют течения для которых , такие течения называются безвихревыми или потенциальными,. Т.к. в этом случает существует потенциал вектора скорости φ, который связан с составляющими вектора скорости следующими соотношениями:

; ; ;









ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.