|
Стоячая электромагнитная волна.Мы уже говорили, что стоячую упругую волну можно представить как результат суперпозиции двух одинаковых волн, бегущих навстречу друг другу. Это относится и к электромагнитным волнам. Однако надо учесть, что электромагнитная волна характеризуется не одним вектором, а двумя взаимно ортогональными векторами Пусть волна распространяется в положительном направлении оси х и описывается уравнениями
Для волны, распространяющейся в обратном направлении, как мы знаем, в скобках минусы заменяются на плюсы. Кроме того, будем помнить, что векторы Это поясняет рис.3.3.2, где в части (а) показаны возможные ориентации векторов Таким образом, при сложении волн либо векторы
или В результате суперпозиции двух встречных волн, (3.3.28) и (3.3.29), получим:
и т. д. (см. рис.3.3.3). Поскольку колебания векторов
В стоячей электромагнитной волне энергия переходит из чисто электрической, имеющей максимумы в пучностях Электромагнитная волна на границе раздела диэлектриков Выясним, что происходит при падении плоской электромагнитной волны на границу раздела двух однородных изотропных прозрачных диэлектриков, магнитная проницаемость которых равна единице (µ = 1). Известно, что при этом возникают отраженная и преломленная волны. Ограничимся рассмотрением частного, но практически важного случая, когда волна падает нормально на границу раздела диэлектриков с показателями преломления n 1 и n 2. Обозначим электрическую составляющую в падающей, отраженной и преломленной волнах соответственно через
тангенциальных составляющих векторов
Перепишем эти условия для нашего случая:
Согласно (3.3.14), Тогда
Решив совместно уравнения (3.3.34) и (3.3.36), получим выражения для Е’y и Е”y через Еy, которые в векторной форме имеют вид:
Отсюда следует, что: 1. Вектор 2. Это же относится и к векторам Эти результаты мы будем использовать в дальнейшем при изучении интерференции волн, отраженных от поверхностей тонких пластинок.
Коэффициенты отражения и пропускания. Вопрос об этих коэффициентах мы рассмотрим для случая нормального падения световой волны на границу раздела двух прозрачных диэлектриков. Ранее мы выяснили, что интенсивность I гармонической волны, пропорциональна
Обратим внимание на то, что r не зависит от направления падающей волны на границу раздела: из среды 1 в среду 2, или наоборот. При небольшой разнице показателей преломления граничащих сред этот коэффициент оказывается очень небольшим (на границе стекло – воздух он составляет 0,04) Аналогично находим и коэффициент пропускания t как отношение I’’ / I. Согласно (3.3.27), I” / I =
Нетрудно убедиться в том, что сумма обоих коэффициентов r + t = 1, как и должно быть.
Лекция 3.4 Поляризация волн. Поляризация света. Способы поляризации.
Как уже указывалось, электромагнитная волна является поперечной. Это значит, что векторы В зависимости от длины волны (или частоты) различают несколько видов электромагнитных волн: радиоволны, оптический диапазон, рентгеновское и гамма-излучения. В дальнейшем нас будет интересовать главным образом оптический диапазон длин волн. Его подразделяют на инфракрасное излучение ………..l ~ 1 мм ÷ 0,76 мкм, видимое излучение (свет) ……….l ~ 0,76 ÷ 0,40 мкм, ультрафиолетовое излучение.......l ~ 0,40 ÷ 0,01 мкм. Соответствующие длины волн указаны в вакууме. По классическим представлениям излучение светящегося тела (газа) слагается из волн, испускаемых его атомами. Излучение отдельного атома продолжается порядка 10-8 c и представляет собой, как говорят, цуг волн. Излучив, атом через некоторое время, придя в возбужденное состояние, излучает опять и т. д. Одновременно излучает множество атомов. Порожденные ими цуги волн, налагаясь друг на друга, образуют испускаемую телом световую волну. Направления колебаний для каждого цуга ориентированы случайным образом. Поэтому в результирующей световой волне колебания светового вектора происходят в разных направлениях с равной вероятностью, оставаясь в плоскости перпендикулярной лучу. Это надо понимать так, что при прохождении световой волны через некоторую точку колебания светового вектора быстро и беспорядочно сменяют друг друга. Такой свет называют неполяризованным или естественным. Существуют способы упорядочивания колебаний световой волны. Свет, в котором направление колебаний светового вектора упорядочено каким-либо образом, называют поляризованным. Если колебания светового вектора происходят только в одной плоскости, содержащей луч и вектор Если конец светового вектора описывает в этой плоскости эллипс, то такой свет называют эллиптически-поляризованным. Частным случаем такой поляризации является круговая или циркулярная, когда световой вектор меняется только по направлению, не меняясь по модулю. В зависимости от направления вращения вектора Создание принципиально нового источника света — лазера позволило получить плоско-поляризованный свет с высокой степенью монохроматичности. Использование такого источника света сильно упростило экспериментальное решение многих вопросов, связанных с интерференцией, дифракцией и др.
Способы поляризации света. 1. Поляризация при отражении света на границе раздела диэлектриков. Естественный свет можно представить как наложение (сумму) двух некогерентных (несогласованных) плоскополяризованных волн с взаимно ортогональными плоскостями поляризации. Рассматривая отражение и преломление волны, падающей под произвольным углом на границу раздела диэлектриков, можно найти соотношения между амплитудами и фазами падающей, отраженной и преломленной волн – так называемые формулы Френеля. При необходимости с ними можно познакомиться во многих учебниках и справочниках. Мы не будем выписывать эти формулы, поскольку для решения наших вопросов они нам не понадобятся. Важно отметить только, что с помощью этих формул можно показать, что при произвольном угле падения
При некотором значении угла падения отраженный свет становится полностью поляризованным, и его плоскость поляризации (плоскость колебаний вектора
На рис.3.4.1. представлена именно такая ситуация. Точками и черточками на отраженном и преломленном лучах этого рисунка показаны направления колебаний вектора 2. Поляризация при двойном лучепреломлении.
Существуют кристаллы одноосные и двуосные. У одноосных кристаллов один из преломленных пучков подчиняется обычному закону преломления ( пучка на поверхность кристалла необыкновенный пучок может отклоняться от нормали (рис.3.4.2). И, как правило, необыкновенный луч не лежит в плоскости падения. Наиболее сильно двойное лучепреломление выражено у таких одноосных кристаллов как кварц (кристаллический), исландский шпат и турмалин. Далее мы ограничимся рассмотрением только одноосных кристаллов. У одноосных кристаллов имеется направление – оптическая ось 00’ -, вдоль которого обыкновенная и необыкновенная волны распространяются, не разделяясь пространственно и с одинаковой скоростью (у двуосных кристаллов, например слюды, имеются два таких направления). Оптическая ось 00’ кристалла не является какой-то особой прямой линией. Она характеризует лишь избранное направление в кристалле и может быть проведена через произвольную точку кристалла. Любую плоскость, проходящую через оптическую ось, называют главным сечением или главной плоскостью кристалла. Обычно пользуются главным сечением (плоскостью), проходящим через световой луч в кристалле. Обыкновенная и необыкновенная волны (и лучи) линейно поляризованы. Колебания вектора Оба луча, вышедшие из кристалла, отличаются друг от друга только направлением поляризации, так что названия «обыкновенный» (о) и «необыкновенный» (е) имеют смысл только внутри кристалла. Раздвоение световых лучей обусловлено зависимостью показателя преломления среды от направления светового вектора волны. Световую волну, падающую на кристалл, можно представить как совокупность двух линейно поляризованных волн, у одной из которых плоскость поляризации перпендикулярна главному сечению кристалла (обыкновенный луч), а у другой – параллельна ему (необыкновенный луч). Скорость распространения обыкновенной волны и, следовательно, показатель преломления для нее
Поляризаторы. Закон Малюса. Устройства, с помощью которых можно получить из естественного поляризованный свет (обычно линейно-поляризованный) называются поляризаторами. Действие таких приборов может быть основано на двух вышеназванных явлениях. В любом случае вышедший из поляризатора свет линейно поляризован, а плоскость, проведенная через вектор
Соотношение (3.4.3) называется законом Малюса. Если падающий свет естественный, то угол
Лекция 3.5 Фазовая и групповая скорости волны. Дисперсия.
В вакууме все электромагнитные волны распространяются с одинаковой скоростью, называемой скоростью света - с. Скорость же распространения волн разных частот в веществе будет различной. Дело в том, что электрические диполи диэлектрика под влиянием электромагнитного поля волны совершают вынужденные колебания. Электромагнитное излучение, вызванное колебаниями этих диполей, создает вторичную волну, которая, накладывается на исходную (первичную) и дает результирующую волну в веществе. Это наложение оказывается достаточно сложным и в результате скорость волны оказывается зависящей от ее частоты. Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность «горбов» и «впадин», перемещающихся вдоль оси х с фазовой скоростью
С помощью такой волны нельзя передать никакого сигнала, так как каждый последующий «горб» или «впадина» ничем не отличаются от предыдущего. Рис.3.5.1.
Однако, как уже отмечалось, монохроматическая волна это идеализация. Реально любая волна представляет собой некую совокупность (суперпозицию) волн с частотами, заключенными в некотором интервале Рассмотрим простейший случай. Пусть волновой пакет состоит из двух волн с одинаковыми амплитудами и небольшим отличием по частотам (а следовательно и по волновым числам)
где
Выражение, стоящее в квадратных скобках, можно считать амплитудой волнового пакета (огибающая на рис.3.5.1). Эта амплитуда меняется в пространстве и во времени, но фиксировав некоторое ее значение, например максимум (точка В на рисунке) можно передавать информацию. Найдем скорость этой точки. Для этого фиксируем некоторое значение амплитуды. За время dt это значение переместится на dx. Тогда можно записать
Откуда получим
Эта величина есть не что иное, как скорость перемещения амплитуды волнового пакета, называемая групповой скоростью. Это также скорость перемещения энергии. Мы получили это выражение для группы, состоящей из двух волн. В общем случае для групповой скорости, которую обозначим u, имеет место выражение
Напомним, что фазовая скорость волны Найдем связь между групповой и фазовой скоростью. Учтем связь между длиной волны и волновым числом
Из полученного соотношения следует, что, если фазовая скорость не зависит от частоты (или длины волны), то групповая и фазовая скорости одинаковы и форма волнового пакета не меняется. Если же фазовые скорости для разных составляющих пакета различны, то V ≠ u и форма волнового пакета меняется (пакет расплывается). Явление зависимости фазовой скорости (а, следовательно, и показателя преломления вещества) от длины волны (или частоты) называется дисперсией.
Дисперсия света. Дисперсия света объясняется зависимостью диэлектрической проницаемости
Рис.3.5.2. На рис 3.5.2. показана зависимость показателя преломления и коэффициента поглощения от отношения частоты волны к собственной частоте электронов. Видно, что в области, где Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис.3.5.3) под углом
После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Очевидно, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы (рис.3.5.4). Пучок белого света за призмой разлагается в спектр, что и наблюдал Ньютон. Таким образом, с помощью призмы, разлагая свет на монохроматические составляющие, можно определить его спектральный состав.
Лекция 3.6 Интерференция. Условия максимума и минимума интерференции.
Интерференция - это явление наложения двух или нескольких волн, при котором результирующая интенсивность не равна сумме интенсивностей складываемых волн. Интерферировать могут волны любой физической природы. Мы рассмотрим это явление на примере электромагнитных волн. Пусть в некоторую точку пространства приходят две плоские электромагнитные волны
Интенсивность волны пропорциональна среднему по времени квадрату напряженности электрического поля: I ~ < Здесь усреднение проводится за время наблюдения. Фактически всякий прибор, с помощью которого наблюдают интерференционную картину, обладает некоторой инерционностью, т.е. регистрирует не мгновенную картину, а усредненную за промежуток времени Первые два слагаемых в правой части (3.6.3) определяют (с учетом коэффициента пропорциональности) интенсивности волн I
Однако параллельность векторов
Условия максимума и минимума интерференции. Модуль амплитуды результирующего колебания Е Е Тогда результирующая интенсивность I = I В реальных источниках излучателями являются отдельные атомы, не связанные друг с другом ( Тогда суммарная интенсивность равна сумме интенсивностей складываемых волн – интерференция отсутствует. Если же добиться, чтобы разность фаз в каждой точке пространства оставалась неизменной с течением времени, то значение интенсивности в разных точках пространства будет отличным от суммы интенсивностей складываемых волн и различным в разных точках в зависимости от величины cos ( I
![]() Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... ![]() Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|