Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Режимы работы электрической цепи





При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.

Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).

Рис. 1.23

Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.

Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления

.

Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС E э и внутренним сопротивлением r , нагрузкой для которого является входное сопротивление пассивного двухполюсника R вх= R н.

Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки R н. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Работа активного двухполюсника под нагрузкой R н определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде

(1.12)

U = E эIr .

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.

Режим холостого хода

В этом режиме с помощью ключа SA нагрузка R н отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС E э и называется напряжением холостого хода U хх

U = U хх= E э.

Рис. 1.24

Режим короткого замыкания

В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление R н=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IR н, а уравнение (1.12) вольт-амперной характеристики можно записать в виде

(1.13)

.

Значение тока короткого замыкания I к.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).

Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника E э и r могут быть определены по результатам режимов холостого хода и короткого замыкания:

(1.14)

E э= U хх; .

При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I <0(участок II) источник получает энергию из внешней цепи, т.е. работает в режиме потребителя электрической энергии. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. При напряжении U <0 (участок III) резисторы активного двухполюсника потребляют энергию источников из внешней цепи и самого активного двухполюсника.

Номинальный режим

Номинальный режим электрической цепи обеспечивает технические параметры как отдельных элементов, так и всей цепи, указанные в технической документации, в справочной литературе или на самом элементе. Для разных электротехнических устройств указывают свои номинальные параметры. Однако три основных параметра указываются практически всегда: номинальное напряжение U ном, номинальная мощность P ном и номинальный ток I ном.

Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением (1.12), записанном для номинальных параметров

(1.15)

U ном= E эI ном r .

На вольт-амперной характеристике (рис. 1.24) это уравнение определяется точкой 3 с параметрами U ном и I ном.

Согласованный режим

Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Определим параметры электрической цепи (рис. 1.23), обеспечивающие получение согласованного режима. При подключении нагрузки R н к активному двухполюснику (рис. 1.23) в ней возникает ток

.

При этом на нагрузке выделится активная мощность

(1.16)

.

Определим соотношение между сопротивлением нагрузки R н и внутренним сопротивлением r эквивалентного источника ЭДС, при котором в сопротивлении нагрузки R н выделяется максимальная мощность при неизменных значениях E э и r . С этой целью определим первую производную P по R н и приравняем ее к нулю:

.

Так как выражение в знаменателе – конечное, то, отбрасывая не имеющее физического смысла решение R н=− r , получим, что значение сопротивления нагрузки, согласованное с сопротивлением источника

(1.17)

R н= r .

Можно найти вторую производную и убедиться в том, что она отрицательна , поэтому соотношение (1.17) соответствует максимуму функции P = F (R н).

Подставив (1.17) в (1.16), получим значение максимальной мощности, которая может выделена в нагрузке R н

(1.18)

.

Полезная мощность, выделяющаяся в нагрузке, определяется уравнением (1.16). Полная активная мощность, выделяемая активным двухполюсником,

.

Коэффициент полезного действия

(1.19)

.

если R н= r , то .

Для мощных электротехнических устройств такое низкое значение КПД недопустимо. Но в электронных устройствах и схемах, где величина P измеряется в милливаттах, с низким КПД можно не считаться, поскольку в этом режиме обеспечивается максимальная передача мощности на нагрузку.

 

6. Метод узлового напряжения.

Метод узловых напряжений состоит в определении напряжений между узлами сложной электрической цепи путем решения уравнений, составленных по первому закону Кирхгофа, куда в качестве неизвестных входят напряжения между узлами цепи. Этот метод позволяет уменьшить количество уравнений системы до величины: (k -1), где k - количество узлов сложной электрической цепи. Данный метод целесообразно использовать, когда l >2(k - 1), где l - количество ветвей сложной электрической цепи.

Узловыми напряжениями называют напряжения между каждым из (k -1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.

Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома по формуле (1.16).

Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:

  1. Вычерчиваем принципиальную схему и все ее элементы.
  2. На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.
  3. Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.
  4. Для определения потенциалов остальных (k -1) узлов по отношению к опорному узлу составляем следующую систему уравнений:
  5. Решаем любым методом полученную систему относительно узловых напряжений и определяем их.
  6. Далее для каждой ветви в отдельности применяем закон Ома (1.16) и находим все токи в электрической цепи.

Расчет сложной электрической цепи по данной методике приведен в примере №14.

Рассмотрим применение метода узловых напряжений для расчета электрических цепей более подробно на примере схемы, взятой из предыдущего раздела.
.







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.