Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Если прямые не пересекаются и не параллельны между собой, то точка пересечения их одноименных проекций не лежит на одной линии связи.





Точке пересечения фронтальных проекций прямых (рис. 3.24) соответствуют две точки А и В, из которых одна принадлежит прямой а, другая в. Их фронтальные проекции совпадают лишь потому, что в пространстве обе точки А и В находятся на общем перпендикуляре к фронтальной плоскости проекций. Горизонтальная проекция этого перпендикуляра, обозначенная стрелкой, позволяет установить, какая из двух точек ближе к наблюдателю. На предложенном примере ближе точка В лежащая на прямой в, следовательно, прямая в проходит в этом месте ближе прямой а и фронтальная проекция точки В закрывает проекцию точки А. (Для точек С и Д решение аналогично).

Этот способ определения видимости по конкурентным точкам. В данном случае точки А и В- фронтально конкурирующие, а С и Д -горизонтально конкурирующие.

а) модель б) эпюр
Рисунок 3.24. Скрещивающиеся прямые

 

 

Проекции плоских углов.

Угол - геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки. Углом между прямыми называется меньший из двух углов между лучами, параллельными этим прямым. Углом между плоскостью и не перпендикулярной ей прямой называется угол между прямой и её проекцией на данную плоскость. Витовые поверхности и изделия с резьбой В технике широко применяются изделия с винтовыми поверхностями.

Рассмотрим ряд свойств ортогональных проекций плоских углов:

1. Если хотя бы одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то на эту плоскость прямой угол проецируется без искажения (Теорема о проецировании прямого угла) Длительный тоновой рисунок гипсовой головы Последовательность построений, как и раньше, от большой формы к малой, от общего к частностям. Обратите внимание на построение глаз. Большая форма глаза образуется сферой глазного яблока, на которую накладывается сферическая поверхность век, имеющая несколько больший диаметр Методы преобразования проекций. Вращение Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей Изображения Виды Пpавила изобpажения пpедметов (изделий, сооpужений и их составных элементов) на чеpтежах всех отpаслей пpомышленности и стpоительства устанавливает ГОСТ 2.305 - 68.Изобpажения пpедметов должны выполняться по методу пpямоугольного (оpтогонального) пpоециpования на плоскость. Пpи этом пpедмет pасполагают между наблюдателем и соответствующей плоскостью пpоекций. Следует обpатить внимание на pазличие, существующее между изобpажением и пpоекцией пpедмета.

Теоретическая механика Шарнирно-неподвижная опора Опора допускает поворот вокруг шарнира и может быть заменена двумя составляющими силы вдоль осей координат.

  Рисунок 3.25. Теорема о проецировании прямого угла Выполнение графических работ Метод вспомогательных секущих плоскостейНачертательная геометрия   Рисунок 3.26. Обратная теорема о проецировании прямого угла

Дано: Ð АВС= 90о; [ВС] // П 1; [АС] # П 1.

Для доказательства теоремы продлим отрезок АС до пересечения с плоскостью П 1 (рис. 3.25) получим горизонтальный след прямой - точку Мº М 1, одновременно принадлежащую прямой и ее проекции. Из свойства ортогонального проецирования следует, что [ВС] // [В 1 С 1 ]. Если через точку М проведем прямую М Dпараллельную С 1 В 1, то она будет параллельна и СВ, а следовательно Ð СМD= 90о. Согласно теореме о трех перпендикулярах Ð С 1 МD= 90о. Таким образом, [MD]^[А 1 С 1 ] и [MD]//[В 1 С 1 ], следовательно, Ð А 1 С 1 В 1 = 90о, что и требовалось доказать. В случае когда [АС]^П 1 проекцией угла, согласно свойствам ортогонального проецирования, будет прямая линия.

2. Если проекция угла представляет угол 900, то проецируемый угол будет прямым лишь при условии, что одна из сторон этого угла параллельна плоскости проекций (рис. 3.26).

3. Если обе стороны любого угла параллельны плоскости проекций, то его проекция равна по величине проецируемому углу.

4. Если стороны угла параллельны плоскости проекций или одинаково наклонены к ней, то деление проекции угла на этой плоскости пополам соответствует делению пополам и самого угла в пространстве.

5. Если стороны угла не параллельны плоскости проекций, то угол на эту плоскость проецируется с искажением.

 

 

ТИПЫ ЗАДАЧ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Решение многих задач способами начертательной геометрии, в конечном счете, сводится к определению позиционных и метрических характеристик геометрических объектов. В связи с этим все многообразие задач может быть отнесено к двум группам:

1. Задачи позиционные – решение, которых должно давать ответ на вопрос о взаимном расположении геометрических объектов (в частном случае, выяснить их взаимную принадлежность) как по отношению друг к другу, так и относительно системы координатных плоскостей проекций.

2. Задачи метрические – при решении задач этой группы появляется возможность ответить на вопросы, касающиеся как внутренней метрики заданных геометрических объектов (определение расстояния между различными точками объекта и нахождения углов между линиями и поверхностями, принадлежащими этому объекту), так и определение расстояний между точками и величин углов между линиями и поверхностями, принадлежащими различным объектам.

В начертательной геометрии задачи решаются графически. Количество и характер геометрических построений при этом определяются не только сложностью задачи, но и в значительной степени зависит от того, с какими проекциями (удобными или неудобными) приходится иметь дело. При этом наиболее выгодным частным положением геометрического объекта следует считать:

· Положение, перпендикулярное к плоскости проекций (для решения позиционных, а в ряде случаев, и метрических задач); Винтовую линию на цилиндре можно получить следующим образом. Закрепив в патроне токарного станка цилиндрический стержень, сообщают ему равномерное вращение; к поверхности этого стержня подводят вершину головки резца и сообщают ему равномерное поступательное движение вдоль оси стержня. Рисунок гипсовой маски или головы эллипсами Это задание, так же как и работа штриховыми полями, является методом пластического анализа формы.

Теоретическая механика Балочные системы. Определение реакций опор и моментов защемления Виды нагрузок и разновидности опор Виды нагрузок Шарнирно-подвижная опора Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности. Сечения Выявление фоpмы внутpенних повеpхностей пpедмета пpи помощи штpиховых линий значительно затpудняет чтение чеpтежа, сoздает пpедпосылки для непpавильного его толкования, усложняет нанесение pазмеpов и условных обозначений.

· Положение, параллельное по отношению к плоскости проекций (при решении метрических задач). Вращение прямой общего положения вокруг оси, перпендикулярной плоскости проекций до положения уровня и далее до проецирующего положения осуществляется

При решении метрических задач, связанных с определением истинных размеров изображенных на эпюре фигур, могут встретиться значительные трудности, если заданные проекции не подвергнуть специальным преобразованиям.

Рассмотрим на примере: Определить расстояние от точки А до прямой m. Расстояние от точки до прямой - это натуральная величина перпендикуляра восстановленного из точки к прямой линии. Простейшим условием такой задачи является случай, когда прямая является проецирующей. Определим расстояние от точки А до прямой m, когда прямая является горизонтально проецирующей линией (рис. 4.1), т.е. m^ П 1, m \\ П 2, m \\ П 3. Согласно, теореме о проецировании прямого угла, перпендикуляр из проекций точки А можно проводить к фронтальной и профильной проекции прямой m, при этом полученный отрезок АК - горизонталь, т.е. параллелен горизонтальной плоскости проекций и на эту плоскость проецируется в натуральную величину.

а) модель Выполнение графических работ Биссекторная плоскостьНачертательная геометрия б) эпюр
Рисунок 4.1. Расстояние от точки до горизонтально проецирующей прямой

 

  МЕТОДЫ ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ

Если прямая параллельна одной из плоскостей проекций т.е. является прямой уровня, то без преобразования ортогональных проекций можно только найти проекции перпендикуляра. Пусть прямая f фронталь, т.е. f \\ П 2 значит перпендикуляр можно проводить из проекций А 2 к фронтальной проекции прямой m2, на эту плоскость угол будет проецироваться без искажения (рис. 4.2). Однако полученные проекции отрезка АК не отражают истинной величины отрезка потому, что АК - отрезок прямой общего положения.

а) модель б) эпюр
Рисунок 4.2. Расстояние от точки до фронтальной прямой

Общий случай подобной задачи, когда требуется найти расстояние от точки до прямой общего положения, то даже построение проекции искомого отрезка без преобразования проекций не представляется возможным.

Сопоставление приведенных чертежей показывает, что трудности решения одной и той же задачи существенно зависят от положения геометрических объектов относительно плоскостей проекций.

В связи с этим, естественно, возникает вопрос, каким путем можно получить удобные проекции для решения поставленной задачи по заданным неудобным ортогональным проекциям.

Переход от общего положения геометрической фигуры к частному можно осуществлять за счет изменения взаимного положения проецируемой фигуры и плоскостей проекций.

При ортогональном проецировании это достигается двумя путями:

1. Перемещение в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве - метод плоскопараллельного перемещения.

2. Перемещением плоскостей проекций в новое положение по отношению, к которому проецируемая фигура (которая не меняет положения в пространстве) окажется в частном положении - метод замены плоскостей проекций.

 

МЕТОД ПЛОСКОПАРАЛЛЕЛЬНОГО ПЕРЕМЕЩЕНИЯ

Изменение взаимного положения проецируемого объекта и плоскостей проекций методом плоскопараллельного перемещения осуществляется путем изменения положения геометрического объекта так, чтобы траектория движения её точек находилась в параллельных плоскостях. Плоскости носители траекторий перемещения точек параллельны какой-либо плоскости проекций (рис. 4.3). Траектория произвольная линия. При параллельном переносе геометрического объекта относительно плоскостей проекций, проекция фигуры хотя и меняет свое положение, но остается конгруэнтной проекции фигуры в ее исходном положении.

Теоретическая механика Условие равновесия произвольной плоской системы сил При равновесии главный вектор системы равен нулю.

а)модель б) эпюр
Рисунок 4.3. Определение натуральной величины отрезка методом плоскопараллельного перемещения

Свойства плоскопараллельного перемещения:

1. При всяком перемещении точек в плоскости параллельной плоскости П 1, её фронтальная проекция перемещается по прямой линии, параллельной оси х. Для построения изображения проекции цилиндрической винтовой линии по данному диаметру с1 цилиндра, шагу Р винтовой линии, направлению вращения точки (по часовой или против часовой стрелки) и направлению поступательного движения точки (вверх и вниз) окружность основания цилиндра делят на любое число равных частей Зарисовки черепа штриховыми полями Первый метод анализа формы, который мы применили в рисунке головы, был рисунок плоскостями. Это был анализ конструкции формы. Второй метод - анатомический анализ. И теперь третий метод - анализ пластический. Уклон – это тангенс угла наклона одной прямой к другой

2. В случае произвольного перемещения точки в плоскости параллельной П 2, её горизонтальная проекция перемещается по прямой параллельной оси х. Выполнение графических работ Метод вращения вокруг оси Начертательная геометрия

Машиностроительное черчение Деталирование чертежей Чтение чертежа общего вида Hа пpоизводстве для изготовления изделия необходимы чеpтежи деталей этого изделия. Выполнение чеpтежей деталей по чеpтежу общего вида данного изделия называется деталиpованием. Чеpтеж детали должен быть пpедельно ясным, четким, без лишних изобpажений и надписей.

 

В зависимости от положения этих плоскостей по отношению к плоскостям проекций и вида кривой линии - определяющей траекторию перемещения точек, метод плоскопараллельного проецирования имеет следующие частные случаи:

1. Метод вращения вокруг оси, перпендикулярной плоскости проекций;

2. Метод вращения вокруг оси, параллельной плоскости проекций;

3. Метод вращения вокруг оси, принадлежащей плоскости проекций (вращение вокруг следа плоскости)- способ совмещения.

Рассмотрим некоторые из этих способов.

  МЕТОД ВРАЩЕНИЯ ВОКРУГ ОСИ ПЕРПЕНДИКУЛЯРНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ

Плоскости носитель траекторий перемещения точек параллельны плоскости проекций. Траектория - дуга окружности, центр которой находится на оси перпендикулярной плоскости проекций. Для определения натуральной величины отрезка прямой общего положения АВ (рис.4.4), выберем ось вращения перпендикулярную горизонтальной плоскости проекций и проходящую через В 1. Повернем отрезок так, чтобы он стал параллелен фронтальной плоскости проекций (горизонтальная проекция отрезка параллельна оси x). При этом точка А 1 переместиться в А * 1, а точка В не изменит своего положения. Положение точки А * 2 находится на пересечении фронтальной проекции траектории перемещения точки А (прямая линия параллельная оси x) и линии связи проведенной из А * 1. Полученная проекция В 2 А * 2 определяет действительные размеры самого отрезка.

а) модель б) эпюр
Рисунок 4.4. Определение натуральной величины отрезка методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций

 

  МЕТОД ВРАЩЕНИЯ ВОКРУГ ОСИ ПАРАЛЛЕЛЬНОЙ ПЛОСКОСТИ ПРОЕКЦИЙ

Рассмотрим этот способ на примере определения угла между пересекающимися прямыми (рис.4.5). Рассмотрим две проекции пересекающихся прямых а и в которые пересекаются в точке К. Для то чтобы определить натуральную величину угла между этими прямыми необходимо произвести преобразование ортогональных проекций так, чтобы прямые стали параллельны плоскости проекций. Воспользуемся способом вращения вокруг линии уровня - горизонтали. Проведем произвольно фронтальную проекцию горизонтали h2 параллельно оси О х, которая пересекает прямые в точках А 2 и В 2. Определив проекции А 1 и В 1, построим горизонтальную проекцию горизонтали h1. Траектория движения всех точек при вращении вокруг горизонтали - окружность, которая проецируется на плоскость П 1 в виде прямой линии перпендикулярной горизонтальной проекции горизонтали.

а) модель б) эпюр
Рисунок 4.5. Определение угла между пересекающимися прямыми, вращением вокруг оси параллельной горизонтальной плоскости проекций
       

Таким образом, траектория движения точки К 1 определена прямой К 1 О 1, точка О -центр окружности - траектории движения точки К. Чтобы найти радиус этой окружности найдем методом треугольника натуральную величину отрезка КО. Продолжим прямую К 1 О 1 так чтобы| КО |=| О 1 К * 1|. Точка К * 1 соответствует точке К, когда прямые а и в лежат в плоскости параллельной П 1 и проведенной через горизонталь - ось вращения. С учетом этого через точку К * 1 и точки А 1 и В 1 проведем прямые, которые лежат теперь в плоскости параллельной П 1, а следовательно и угол j - натуральная величина угла между прямыми а и в.

  МЕТОД ЗАМЕНЫ ПЛОСКОСТЕЙ ПРОЕКЦИЙ

Изменение взаимного положения проецируемой фигуры и плоскостей проекций методом перемены плоскостей проекций, достигается путем замены плоскостей П 1 и П 2 новыми плоскостями П 4 (рис. 4.6). Новые плоскости выбираются перпендикулярно старым. Некоторые преобразования проекций требуют двойной замены плоскостей проекций (рис. 4.7). Последовательный переход от одной системы плоскостей проекций другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой осидолжно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1: Определить натуральную величину отрезка АВ прямой общего положений (рис. 4.6). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости.

Выберем новую плоскость проекций П 4, параллельно отрезку АВ и перпендикулярно плоскости П 1. Введением новой плоскости, переходим из системы плоскостей П 1 П 2 в систему П 1 П 4, причем в новой системе плоскостей проекция отрезка А 4 В 4 будет натуральной величиной отрезка АВ.

а) модель б) эпюр
Рисунок 4.6. Определение натуральной величины отрезка прямой методом замены плоскостей проекций
       

Задача 2: Определить расстояние от точки А до прямой общего положения, заданной отрезком АВ (рис._4.7).

а) модель б)эпюр
Рисунок 4.7. Определение расстояния от точки до прямой общего положения методом замены плоскостей проекций
       

 

 

ПЛОСКОСТЬ

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости:

1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки;

2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Плоскость в линейной алгебре - поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением 1-ой степени. Общее уравнение плоскости:

Ax+By+Cz+D=0,

где А, В, С, и D - постоянные, причем А, В и С одновременно не равны нулю. Резьбы, применяемые в подвижных соединениях для передач заданного перемещения одной детали относительно другой, называются кинематическими (ходовыми). Метрическая резьба наиболее часто применяется в крепежных деталях (винты, болты, шпильки, гайки). Зарисовки штриховыми полями гипсовых масок или голов Обратите внимание, как глазные яблоки вписываются в глазницы, как движение носовой кости продлевается движением носовых хрящей, как губы обтекают по дуге форму зубов. Линия прикрепления уха оказывается продлением края нижней челюсти. Правила нанесения размеров на чертежах и других технических документах на изделия всех отраслей промышленности и строительства установлены ГОСТ 2.307 – 68. Размеры – это очень важная часть чертежа.

Техническая механика — комплексная дисциплина. Она включает три раздела: «Теоретическая механика», «Сопротивление материалов», «Детали машин». «Теоретическая механика» — раздел, в котором излагаются основные законы движения твердых тел и их взаимодействия. В разделе «Сопротивление материалов» изучаются основы прочности материалов и методы расчетов элементов конструкций на прочность, жесткость и устойчивость под действием внешних сил. В заключительном разделе «Технической механики» «Детали машин» рассматриваются основы конструирования и расчета деталей и сборочных единиц общего назначения. Оформление чертежей Виды изделий и их структура В соответствии с ГОСТ 2.101 - 68 ИЗДЕЛИЕМ называется любой пpедмет или набоp предметов производства, подлежащих изготовлению на пpедпpиятии.

 

СПОСОБЫ ГРАФИЧЕСКОГО ЗАДАНИЯ ПЛОСКОСТЕЙ

Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой линии (рис.5.1); Выполнение графических работ Фронтально проецирующая плоскость Начертательная геометрия

а) модель б) эпюр
Рисунок 5.1. Плоскость заданная тремя точками, не лежащими на одной прямой

2. Прямой линией и точкой, не принадлежащей этой прямой (рис.5.2);

а) модель б) эпюр
Рисунок 5.2. Плоскость заданная прямой линией и точкой, не принадлежащей этой линии

3. Двумя пересекающимися прямыми (рис.5.3);

а) модель б) эпюр
Рисунок 5.3. Плоскость заданная двумя пересекающимися прямыми линиями

4. Двумя параллельными прямыми (рис.5.4);

а) модель б) эпюр
Рисунок 5.4. Плоскость заданная двумя параллельными прямыми линиями

 

Лекция №5-2

 

РАЗЛИЧНОЕ ПОЛОЖЕНИЕ ПЛОСКОСТИ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ ПРОЕКЦИЙ

В зависимости от положения плоскости по отношению к плоскостям проекций она может занимать как общее, так и частные положения.

1. Плоскость не перпендикулярная ни одной плоскости проекций называется плоскостью общего положения. Такая плоскость пересекает все плоскости проекций (имеет три следа: - горизонтальный aП1; - фронтальный aП2; - профильный aП3).

Следы плоскости общего положения пересекаются попарно на осях в точках ax,ay,az. Эти точки называются точками схода следов, их можно рассматривать как вершины трехгранных углов, образованных данной плоскостью с двумя из трех плоскостей проекций.

Каждый из следов плоскости совпадает со своей одноименной проекцией, а две другие разноименные проекции лежат на осях (рис.5.5).

2.Плоскости перпендикулярные плоскостям проекций – занимают частное положение в пространстве и называются проецирующими. В зависимости от того, какой плоскости проекций перпендикулярна заданная плоскость, различают: Болты Болт состоит из двух частей: головки и стержня с резьбой. В большинстве конструкций болтов на его головке имеется фаска, сглаживающая острые края головки и облегчающая положение гаечного ключа при свинчивании. Линейный рисунок экорше с пояснительными указаниями Экорше это муляж с удаленными кожными покровами.
Задачей этого занятия будет выполнение линейного рисунка муляжа экорше головы человека и снабжение его пояснительными надписями, которые Вы возьмете из анатомического пособия Выполнение чертежей деталей, имеющих сопряжения

2.1. Плоскость перпендикулярная горизонтальной плоскости проекций (a^ P 1), называется горизонтально проецирующей плоскостью. Горизонтальная проекция такой плоскости представляет собой прямую линию, которая одновременно является её горизонтальным следом. Горизонтальные проекции всех точек любых фигур в этой плоскости совпадают с горизонтальным следом (рис.5.6).

Теоретическая механика Основные понятия и аксиомы статики Теоретическая механика Сопротивление материалов Стадии разработки конструкторской документации В зависимости от стадий pазpаботки, устанавливаемых ГОСТ 2.103 - 68, констpуктоpские документы подpазделяются на ПPОЕКТHЫЕ и PАБОЧИЕ.

а) модель Выполнение графических работ Методы преобразования ортогональных проекций Начертательная геометрия   б) эпюр
Рисунок 5.6. Горизонтально проецирующая плоскость

2.2. Плоскость перпендикулярная фронтальной плоскости проекций (a^ П 2)- фронтально проецирующая плоскость. Фронтальной проекцией плоскости a является прямая линия, совпадающая со следом aП2 (рис.5.7).

а)модель б) эпюр
Рисунок 5.7. Фронтально проецирующая плоскость

2.3. Плоскость перпендикулярная профильной плоскости (a^ П 3) - профильно проецирующая плоскость. Частным случаем такой плоскости является биссекторная плоскость (рис.5.8).

а) модель б) эпюр
Рисунок 5.8. Биссекторная плоскость

3. Плоскости параллельные плоскостям проекций – занимают частное положение в пространстве и называются плоскостями уровня. В зависимости от того, какой плоскости параллельны исследуемая плоскость, различают:

3.1. Горизонтальная плоскость - плоскость параллельная горизонтальной плоскости проекций (a// П 1) - (a^ П 2,a^ П 3). Любая фигура в этой плоскости проецируется на плоскость П 1 без искажения, а на плоскости П 2 и П 3 в прямые - следы плоскости aП2 и aП3 (рис.5.9).

а) модель б) эпюр
Рисунок 5.9. Горизонтальная плоскость

3.2. Фронтальная плоскость - плоскость параллельная фронтальной плоскости проекций (a// П 2), (a^ П 1, a^ П 3). Любая фигура в этой плоскости проецируется на плоскость П 2 без искажения, а на плоскости П 1 и П 3 в прямые - следы плоскости aП1 и aП3 (рис.5.10).

а) модель б) эпюр
Рисунок 5.10. Фронтальная плоскость

3.3. Профильная плоскость - плоскость параллельная профильной плоскости проекций (a// П 3), (a^ П 1, a^ П 2). Любая фигура в этой плоскости проецируется на плоскость П 3 без искажения, а на плоскости П 1 и П 2 в прямые - следы плоскости aП1 и aП2 (рис.5.11).

а) модель б) эпюр
Рисунок 5.11. Профильная плоскость

 

 

Лекция №5-3

 

СЛЕДЫ ПЛОСКОСТИ

Следом плоскости называется линия пересечения плоскости с плоскостями проекций. В зависимости от того с какой из плоскостей проекций пересекается данная, различают: горизонтальный, фронтальный и профильный следы плоскости.

Каждый след плоскости является прямой линией, для построения которых необходимо знать две точки, либо одну точку и направление прямой(как для построения любой прямой). На рисунке 5.12 показано нахождение следов плоскости α(АВС). Фронтальный след плоскости αП2, построен, как прямая соединяющая две точки N(АС) и N(АВ), являющиеся фронтальными следами соответствующих прямых, принадлежащих плоскости α. Горизонтальный след αП1 – прямая, проходящая через горизонтальные следы прямых ВС и АВ. Профильный след αП3 – прямая соединяющая точки (αy и αz) пересечения горизонтального и фронтального следов с осями. Упорная резьба применяется при больших односторонних усилиях, действующих в осевом направлении ГОСТ 10177—82 устанавливает форму профиля и основные размеры для однозаходной упорной резьбы Линейный рисунок черепа с пояснительными указаниями На трех предыдущих занятиях мы разбирали конструктивные особенности построения головы как объемной двусторонне симметричной формы. То есть, мы изучали внешнюю конструкцию. Теперь мы посвятим два занятия изучению анатомической конструкции головы, то есть, внутренней. Конусность – это отношение разности диаметров двух поперечных сечений усеченного конуса к длине между ними

а) модель Выполнение графических работ Метод плоскопараллельного перемещения Начертательная геометрия б) эпюр
Рисунок 5.12. Построение следов плоскости Метрическая резьба Исходный пpофиль pезьбы - тpеугольный, с углом между боковыми стоpонами 60 гpадусов.Действительный пpофиль наpужной pезьбы отличается от исходного тем, что веpшины тpеугольников сpезаны на 1/8 H как с внешней cтоpоны, так и со стоpоны впадин.
       

 

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ

Определение взаимного положения прямой и плоскости - позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. Сущность метода заключается в следующем: через прямую проведем вспомогательную секущую плоскость g и установим относительное положение двух прямых а и в, последняя из которых является линией пересечения вспомогательной секущей плоскости g и данной плоскости a (рис.5.13).

Каждому из трех возможных случаев относительного расположения этих прямых соответствует аналогичный случай взаимного расположения прямой и плоскости. Так, если обе прямые совпадают, то прямаяа лежит в плоскости a,параллельность прямых укажет на параллельность прямой и плоскости и, наконец, пересечение прямых соответствует случаю когда прямая а пересекает плоскость a. Таким образом возможны три случая относительного расположения прямой и плоскости: · Прямая принадлежит плоскости; · Прямая параллельна плоскости; · Прямая пересекает плоскость, частный случай – прямая перпендикулярна плоскости. Рассмотрим каждый случай.
Рисунок 5.13. Метод вспомогательных секущих плоскостей
     

 

  Прямая линия, принадлежащая плоскости

Аксиома 1. Прямая принадлежит плоскости, если две её точки принадлежат той же плоскости (рис.5.14).

Задача. Дана плоск







ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.