|
Вопрос2. Принципы работы гидростанций (ГЭС и ГАЭС). Определение электрической мощности и энергии, вырабатываемой на гидростанции. Понятие расхода, стока, напора. Схемы концентрации напора.
Потери напора определяют экономические параметры отдельных элементов ГЭС и режим её работы. Природа этих потерь – наличие гидравлических сопротивлений в движущейся жидкости и шероховатости внутренней поверхности водовода.(сопротивления делятся на: 1)по длине потока 2)местные). Сток — суммарный объем воды, прошедший через заданное поперечное сечение водотока от какого-либо начального момента до некоторого конечного и изменяемый обычно в м3 или км3 Расход — количество воды, протекающее в 1 секунду через данное поперечное сечение водотока, м3/с Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию. Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое. Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности: · мощные — вырабатывают от 25 МВт и выше; · средние — до 25 МВт; · малые гидроэлектростанции — до 5 МВт. Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции. Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу Гидроэлектростанции также делятся в зависимости от максимального использования напора воды: · высоконапорные — более 60 м; · средненапорные — от 25 м; · низконапорные — от 3 до 25 м. В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовыеи радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаютсяповоротнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды. Существуют две основные схемы концентрации напора гидротехническими сооружениями - плотинная и деривационная. В плотинной схеме предусмотрено сооружение плотины, перегораживающей в выбранном створе русло реки в результате чего образуется разность уровней воды в верховой и низовой по течению сторонах плотины. Создающееся при этом с верховой стороны водохранилище носит название верхнего бьефа, а часть реки с низовой стороны - нижнего бьефа. Разность уровней верхнего Zв.б. и нижнего Zн.б бьефов создает необходимый напор гидроэлектростанции Hгэс, при этом напор за счет кривой подпора будет несколько меньше того, который возможен при использовании рассматриваемого участка реки 1-2, т. е. Hуч. Величина представляет, таким образом, некоторую невосполнимую потерю напора: На горных реках с большими уклонами концентрация напора обычно осуществляется по деривационной схеме, реализуемой следующим образом. В выбранном створе реки возводится плотина 1 (на рис.), создающая небольшой подпор и сравнительно малое водохранилище, из которого через водоприёмник 2 вода направляется в деривацию 3, представляющую собой искусственный водовод, выполняемый в виде открытого канала, туннеля или трубопровода. Из деривации вода поступает по напорным трубопроводам 6 к турбинам ГЭС 4. Таким образом, в этой схеме напор создается не плотиной, как в предыдущей схеме, а деривацией, при этом, если деривация напорная, то в конце ее для смягчения возможных при нестационарных режимах гидравлических ударах сооружается уравнительный резервуар 5. Естественно, что используемый гидроэлектростанцией напор Hгэс будет меньше Hуч на размер потерь в водоподводящем тракте (деривация, напорный трубопровод).
Разновидностью рассмотренных двух схем является плотинно-деривационная (смешанная) схема. Она реализуется в тех случаях, когда используемый участок реки на своем протяжении имеет различный уклон, в результате чего целесообразно использовать плотинную схему там, где уклон сравнительно невелик, и деривационную, где уклон существенно больше. Целесообразность использования этой схемы может диктоваться и другими соображениями. Имеется несколько разновидностей собственно деривационных схем. К первой из них можно отнести так называемую межбассейновую деривационную схему (рис. 2.24). В этой схеме концентрация напора осуществляется путем переброски воды из реки А в реку Б, при этом необходимо, чтобы разность уровней воды Hуч в этих реках была значительной, а расстояние между ними и соответственно длина - сравнительно небольшими. Другой разновидностью является межбассейновая схема с насосным подъемом воды на водораздел, где устраивается водохранилище (рис. 2.25). Высота подъема воды H1 обычно меньше высоты измеряемой разностью уровней водораздельного бассейна и нижнего бьефа у здания ГЭС Н2. Установки, в которых насосы и турбины размещаются в одном здании (рис. 2.26), называются гидроаккумулирующими электростанциями (ГАЭС). Нижним бассейном (бьефом) такой ГАЭС могут служить водохранилище или река, а в качестве верхнего бассейна (бьефа) используется существующее озеро, имеющее или не имеющее естественную приточность, или специально созданное на определенной высоте водохранилище. На первых ГАЭС устанавливали две раздельные пары машин: гидротурбину с генератором и электродвигатель с насосом. Такие схемы по числу устанавливаемых машин называют четырехмашинными. Синхронная электрическая машина может работать как в генераторном, так и в двигательном режимах. На основе использования этого свойства была создана трехмашинная схема, в которой отсутствует отдельный двигатель насоса. Появление обратимых гидромашин, работающих как в насосном, так и в турбинном режимах, позволило перейти к двухмашинной схеме ГЭС, имеющей агрегаты, на одном валу которых размещаются как обратимая электрическая машина, так и обратимая гидравлическая. Процесс гидравлического аккумулирования энергии сводится к следующему. В ночное время, когда нагрузка энергосистемы сильно снижается, включаются электродвигатели насосов ГАЭС, накачивающие воду из нижнего бассейна в верхний. В периоды пиков нагрузки энергосистемы запасенная в верхнем бассейне вода пропускается через турбины ГАЭС и находящиеся на одном валу с ними генераторы вырабатывают электроэнергию. Если при этом в верхний бассейн не поступает естественная приточность и один и тот же объем воды (без учета п потерь на испарение и фильтрацию) перекачивается вверх и спускается вниз, то такие гидроаккумулирующие электростанции носят название ГАЭС чистого типа. Если имеется постоянный естественный приток воды в верхний бассейн, то в этом случае образуется ГЭС смешанного типа или, как ее еще называют, ГЭС-ГАЭС. В этом случае мощность ГАЭС можно получить несколько большего значения, чем при отсутствии приточности. Достоинством ГАЭС в современных условиях работы энергетических систем является то, что она искусственно создает гидроэнергетические ресурсы, что важно для тех районов, где этих ресурсов недостаточно. Кроме того, ГАЭС играют существенную роль в режиме покрытия суточного графика нагрузки системы, создавая дополнительную нагрузку в часы ночного провала электропотребления и пиковую мощность в часы повышенного спроса на электроэнергию Коэффициент полезного действия ГАЭС определяется к. п. д. насосного и турбинного режимов. Поэтому он будет меньше, чем к. п. д. ГЭС, и обычно не превосходит 0,70-0,78. Это значит, что из каждых 100 кВт-ч, забираемых ГАЭС из системы, обратно в нее возвращается примерно 75 кВт*ч. Однако этот недостаток смягчается тем, что дневная энергия, когда ГАЭС работает в турбинном режиме, оценивается значительно выше ночной, когда часть ее по существу является бросовой. Энергоэкономическая эффективность ГАЭС в значительной мере определяется используемым напором. Чем больше напор, тем для одной и той же установленной мощности можно обойтись меньшими объемами. Поэтому высоконапорные ГАЭС имеют лучшие технико-экономические показатели. Кроме рассмотренной выше ГАЭС суточного цикла аккумулирования могут быть ГАЭС и с более длительными цикламинедельными, сезонными. Однако для этого должны иметься необходимые гидрологические и топогеологические условия, что встречается довольно редко Билет 20 Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|