|
Средние величины, их сущность и значение. Виды средних величинНаиболее распространённой формой статистических показателей является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени. Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их незаменимым инструментом анализа явлений и процессов в экономике. Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием основных факторов. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей отдельных единиц. Типичность средней непосредственным образом связана с однородностью совокупности. Средняя величина только тогда будет отражать типичный уровень признака, когда она рассчитана по качественно однородной совокупности. Так, если мы рассчитаем средний курс по акциям всех предприятий, реализуемых в данный день на данной бирже, то получим фиктивную среднюю. Это будет объясняться тем, что используемая для расчета совокупность является крайне неоднородной. В этом и подобных случаях метод средних используется в сочетании с методом группировок: если совокупность неоднородна – общие средние должны быть заменены или дополнены групповыми средними, т.е. средними, рассчитанными по качественно однородным группам. В теории средних используются следующие условные обозначения. 1.Признак, по которому определяется среднее, называется осредняемым признаком и обозначается . 2.Величина осредняемого признака у каждой единицы совокупности называется его индивидуальным значением и обозначается . 3.Повторяемость индивидуальных значений называется частотой и обозначается f. 4. Суммарное значение признака обозначается W. Всякий количественный признак статистической совокупности имеет одно единственное среднее значение. Оно может быть рассчитано различными способами в зависимости от формы выражения осредняемого признака (абсолютной, относительной и средней) и имеющейся информации. В зависимости от степени k получаются различные виды средних. 1. Средняя арифметическая простая – наиболее распространенный вид средней k =1 2. Средняя арифметическая взвешенная – используется в том случае, если известны индивидуальные значения признака и их частоты f. Каждый вариант «взвешивают» по своей частоте, т.е. умножают на нее. Частоты f при этом называют статистическими весами или просто весами средней. Пример. По имеющимся данным рассчитаем средний стаж работы сотрудников
ода
3. Средняя гармоническая простая используется в том случае, если необходимо чтобы при осреднении оставалась неизменной сумма величин, обратных индивидуальным значениям признака. где – сумма обратных значений признака. Пример. Автомобиль с грузом от предприятия до склада ехал со скоростью 40 км/ч, а обратно порожняком со скоростью 60км/ч. Какова средняя скорость автомобиля за обе поездки? Пусть расстояние перевозки составило S км. Никакой роли при расчете средней скорости S не играет. При замене индивидуальных значений скорости на среднюю величину необходимо, чтобы неизменной величиной оставалось время, затраченное на обе поездки, иначе средняя скорость может оказаться любой – от скорости черепахи до скорости света. Время поездок равно . Итак, Сократив все члены равенства на S, получим т.е. выполняется условие гармонической средней. Подставляя и , получаем Арифметическая средняя 50 км/ч неверна, т.к. приводит к другому времени движения, чем на самом деле. Если расстояние равно 96 км, то реальное время движения составит . В статистической практике чаще применяется средняя гармоническая взвешенная. 4. Средняя гармоническая взвешенная используется, если известны индивидуальные значения признака и суммарные значения признака. Пример. Определить среднюю стоимость продукции, если известно
5. Средняя агрегатная используется, если известны суммарные значения признака и их частоты. Пример. Определить среднюю стоимость продукции, если известно
6. Средняя квадратическая применяется для расчета среднеквадратического отклонения, являющегося показателем вариации, а также в технике k =2 Средняя квадратическая взвешенная 7. Средняя геометрическая используется для расчета среднего темпа роста по цепной схеме k= 0 При k= 1 получаем арифметическую среднюю, при k= 2 – квадратическую, при k= 3 – кубическую, при k= 0 – геометрическую, при k= -1 – гармоническую среднюю. Чем выше показатель степени k, тем больше значение средней величины. Если все исходные значения признака равны, то и все средние равны const. Итак, имеем следующее соотношение, которое называется правилом мажорантности средних: Пользуясь этим правилом, статистика может в зависимости от настроения и желания ее «знатока» либо «утопить», либо «выручить» студента, получившего в сессию оценки 2 и 5. Каков его средний бал? Если судить по средней арифметической, то средний бал равен 3,5. Но если декан желает «утопить» несчастного и вычислит среднюю гармоническую то студент остается в среднем двоечником, не дотянувшим до тройки. Однако студенческий совет может возразить декану и представить среднюю кубическую величину . Студент уже выглядит «хорошистом» и даже претендует на стипендию. Структурные средние – мода и медиана – в отличие от степенных средних, которые в значительной степени являются абстрактной характеристикой совокупности, выступают как конкретные величины, совпадающие со вполне определенными вариантами совокупности. Это делает их незаменимыми при решении практических задач. Мода – это наиболее часто встречающееся значение признака у единиц данной совокупности. Для дискретного ряда распределения мода определяется без расчета, путем просматривания столбца частот, и соответствует значению признака с наибольшей частотой. Из примера №1 наибольшая частота f=20, что соответствует 4 тарифному разряду, следовательно Mo =4. Для интервального ряда распределения мода определяется по формуле где – нижняя граница модального интервала; – величина модального интервала; – частоты интервала соответственно предшествующего модальному, модального и следующего за модальным. Модальному соответствует интервал с наибольшей частотой. Рассчитаем моду для примера № 2. Модальному соответствует интервал 130-140. Для него , = 140-130=10, =20, - чаще всего норма выработки работников составляет 134%, чаще всего план перевыполняется на 34%. Медиана – значение признака, который лежит в середине ранжированного ряда и делит его пополам. Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания признака. Для дискретных вариационных рядов медиана не рассчитывается, а определяется путем просмотра ряда. Например, для пяти работников дневная норма выработки деталей составляет соответственно 10, 12, 15, 16 и 18 шт. Ме является выработка третьего работника и равна 15 деталям. При четном количестве значений признака за медиану принимается полусумма значений признака, занимающих срединное значение. Н-р, при 10 значениях полусумма 5-го и 6-го значений признака. Для интервального ряда медиана определяется по формуле где – нижняя граница медианного интервала; – величина медианного интервала; – полусумма объема вариационного ряда; – накопленная частота интервала, предшествующего медианному; – частота медианного интервала. Медианным называется интервал, соответствующий половине объема ряда. Для того, найти медианный интервал, необходимо накапливать частоты до тех пор, пока не будет найден интервал, содержащий в себе половину объема ряда. Рассчитаем медиану для примера № 2. Медианный интервал 120-130, т.к. соответствующая ему накопленная частота содержит в себе половину объема ряда. Для него – Половина работников выполняет норму выработки меньше, чем 129%, а другая половина рабочих выполняет норму выработки больше, чем 129%.
Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|