|
ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮПлан: 11.1. Общие положения 11.2. Пересечение прямой с поверхностью многогранника. 11.3. Пересечение прямой с поверхностью вращения. Общие положения При пересечении прямой линии с поверхностью может получиться одна или несколько точек встречи, которые называются точками входа и выхода. Точки встречи прямой линии с поверхностью определяют так: 1) через прямую проводят проецирующую плоскость; 2) строят линию пересечения этой плоскости с заданной поверхностью; 3) находят точки встречи заданной прямой с линией пересечения. Найденные точки будут искомыми. Вспомогательные плоскости проводят с расчетом получить в сечении простые линии: прямые или окружности. Рассмотрим примеры. Пересечение прямой с поверхностью многогранника На рис. 145 даны треугольная пирамида и прямая n общего положения. Построить точки встречи прямой с поверхностью. В данном случае через прямую проведена фронтально-проецирующая плоскость Р. Эта плоскость пересекает боковую поверхность пирамиды по треугольнику 1-2-3. Фронтальная проекция фигуры сечения сливается с фронтальной проекцией секущей плоскости (рис.). Проекции вершин треугольника 1'', 2'', 3'' находятся на пересечении фронтальных проекций ребер пирамиды S '' A '', S '' B '', S '' C '' с фронтальным следом секущей плоскости РV. Горизонтальные проекции 1',2',3' точек сечения находятся по линиям связи (рис. 145). Рис. 145 Соединяя найденные точки, получим горизонтальную проекцию фигуры сечения. Прямая n, принадлежащая, как и треугольник 1-2-3, плоскости P, пересекается со сторонами этого треугольника в точках M и N, которые и являются искомыми точками встречи прямой с поверхностью пирамиды. По горизонтальным проекциям точек М и N (M',N') с помощью линий связи находим их фронтальные проекции M” и N”. При определении видимости отдельных частей прямой n при проецировании этой прямой на плоскости H и V следует учесть видимость граней пирамиды на этих плоскостях проекций. Пересечение прямой с поверхностью вращения 1. На рис. 146 даны цилиндр и прямая n общего положения. Построить точки встречи прямой с поверхностью. В данном случае через прямую удобнее провести горизонтально-проецирующую плоскость Р, которая рассечет цилиндр по прямоугольнику. Точки А и В будут искомые. 2. На рис. 147 даны конус и прямая m, перпендикулярная плоскости H. Построить точки встречи прямой с поверхностью. В данном примере через прямую удобнее провести горизонтально-проецирующую плоскость Р, проходящую через вершину конуса, которая рассечет конус по треугольнику. Точки С и Д будуò искомые. 3. На рис. 148 даны шар и прямая l, параллельная горизонтальной плоскости проекций. Построение точек встречи прямой с поверхностью ясно из чертежа. 4. На рис. 149 даны тело вращения и прямая n общего положения, пересекающая ось тела. Построить точки встречи прямой с поверхностью. Через заданную прямую проводим горизонтально-проецирующую плоскость Р и вращением вокруг оси поверхности совмещаем ее (вместе с прямой) с главной меридиональной плоскостью N. Находим смещенное положение n1 прямой n и смещенные проекции А 1 и В 1 точек А и В. Далее находим точки встречи на основных проекциях.
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ План: 12.1. Общие положения 12.2. Пересечение многогранников 12.3. Способ секущих плоскостей 12.4. Способ концентрических сфер 12.5. Способ эксцентрических сфер 12.6. Особые случаи пересечения. Теорема Монжа. Общие положения В пересечении поверхностей получаются плоские или пространственные линии, которые рассматриваются как множество точек, принадлежащих одновременно обеим поверхностям. Обычно линию пересечения двух поверхностей строят по ее отдельным точкам. Общим способом построения этих точек является способ поверхностей-посредников: — секущих плоскостей; — сферических поверхностей. Каким бы способом ни производилось построение линии пересечения поверхностей, при нахождении точек этой линии необходимо соблюдать определенную последовательность. 1. Для построения линий пересечения выбирают вспомогательную плоскость (или поверхность) с таким расчетом, чтобы в пересечении с каждой из заданных поверхностей получились простые линии: прямые или окружности. 2. Далее обе поверхности пересекают этой вспомогательной плоскостью (или поверхностью) и определяют линию пересечения сначала с одним телом, а затем — с другим. В пересечении этих линий находят общие точки: в первую очередь — опорные (высшую, низшую и т.д.), так как они всегда позволяют видеть, в каких пределах расположены проекции линии пересечения, и где между ними имеет смысл определять промежуточные точки для более точного построения линии пересечения поверхностей; затем — промежуточные. 3. Найденные точки соединяют ломаной или плавной кривой, которая будет искомой линией пересечения заданных поверхностей. 4. Определение видимости линии пересечения производят отдельно для каждого участка, ограниченного точками видимости, при этом видимость всего участка совпадает с видимостью какой-нибудь случайной точки этого участка. На рис. 150 показано построение точек 1 и 2 линии пересечения; K и K 1 — пересекающиеся поверхности; P — одна из вспомогательных секущих плоскостей. Рис. 150 Пересечение многогранников Для построения линии пересечения поверхностей двух многогранников определяют точки встречи ребер одного многогранника с гранями другого. В этом случае каждую грань многогранника рассматривают самостоятельно и построение сводят к определению точек встречи прямых с плоскостью. Для этого проводят проецирующие плоскости через ребра одного из многогранников. П равило: — соединять между собой можно только те точки искомой линии пересечения, которые лежат в одной и той же грани какой-либо из двух данных поверхностей; — каждую точку соединяют только с двумя другими точками. В результате должен получиться замкнутый контур или два замкнутых контура. ПРИМЕР 1. Даны прямая треугольная призма, стоящая на плоскости H, и произвольно расположенная треугольная пирамида. Построить линию пересечения заданных поверхностей (рис. 151). Рис. 151 Ребра призмы обозначим одной буквой (D, E, K), а пирамиды — двумя буквами (SA, SB, SC). Задачу сводим к определению точек встречи ребер пирамиды с гранями призмы. Особенность этого примера — грани призмы являются проецирующими плоскостями (ее ребра перпендикулярны к плоскости Н). Горизонтальные проекции 1-2-3 и 4-5-6 линий пересечения уже имеются, они совпадают с горизонтальной проекцией самой призмы. С помощью линий связи находят фронтальные проекции этих точек на соответствующих ребрах. В результате получают две замкнутые ломаные линии: 1”-2”-3” у входа и 4”-5”-6” у выхода. Отрезки 2”-3” и 5”-6” этих линий невидимые, так как они лежат на задней грани пирамиды. ПРИМЕР 2. Даны треугольные призмы, одна из них стоит на плоскости Н, а другая расположена произвольно. Построить линию пересечения заданных поверхностей рис. 152. Рис. 152 Как и в предыдущем примере, грани одной призмы являются проецирующими поверхностями. По известным горизонтальным проекциям 1',2',3',4',... точек линии пересечения находят их фронтальные проекции. Ребро А не участвует в пересечении. Ребро Е пересекает грани АС и АВ в точках 5' и 6'. Чтобы найти эти точки, проводят через ребро Е горизонтально-проецирующую плоскость Р, которая пересечет грани АС и АВ по прямым линиям ММ 1 и NN 1. Пересечение этих прямых с ребром Е определяет точки 5 и 6. Найденные точки последовательно соединяют прямыми, в результате получают замкнутую ломаную линию пересечения заданных многогранников. Способ секущих плоскостей Рассмотрим частный случай — способ вспомогательных ПРОЕЦИРУЮЩИХ плоскостей. Он заключается в следующем: вводится ряд плоскостей частного положения (уровня или проецирующих), пересекающих данные поверхности по графически простым линиям (прямым или окружностям). Пересечение этих линий между собой дает точки, которые будут общими для каждой из данных поверхностей и, следовательно, будут принадлежать искомой линии пересечения. Рассмотрим случай пересечения двух поверхностей вращения: конуса и цилиндра (рис. 153). Построение линии пересечения начинаем с определения опорных точек 1 и 2 (рис. 153). Их фронтальные проекции находятся на пересечении очерковых линий пересекающихся поверхностей. Горизонтальные проекции 1'и 2' находятся по линиям связи (рис. 153). Рис. 153 Для нахождения промежуточных точек вводим вспомогательные горизонтальные плоскости a, b, g, пересекающие обе поверхности по окружностям (рис.). Пересечение окружностей между собой дает горизонтальные проекции точек (3',4',5',... 10'), общих для конуса и цилиндра. Фронтальные проекции 3”, 4”... находятся по линиям связи (рис. 153). Соединяя найденные точки, получим искомую линию пересечения на комплексном чертеже (рис. 153). Для нахождения линии пересечения в аксонометрии, строим изометрическую проекцию данных поверхностей (рис. 154). Для обеспечения точности аксонометрического изображения пересекающихся поверхностей устанавливаем оси координат (x, y, z) также и на комплексном чертеже. Рис. 154 Далее выполняем в изометрии построение линии пересечения в координатной плоскости x o0o y o, то есть построение вторичной проекции (рис. 154). От каждой отмеченной линии пересечения откладываем по вертикальной линии (параллельной оси z o) высоту, измеренную на комплексном чертеже. То есть получаем аксонометрические проекции точек 1o, 2o, 3o,... 10o (рис.). Соединяя найденные точки плавной кривой, получим аксонометрическое изображение линии пересечения данных поверхностей (рис. 154). Построение разверток цилиндра и конуса с нанесением линии пересечения видно из чертежей (рис.). Развертка боковой поверхности цилиндра — прямоугольник, длина которого равна длине окружности основания радиуса R, а высота — — высоте цилиндра H (рис.). Разбиваем основание цилиндра (горизонтальная проекция) на 8 равных частей и через каждую точку деления проводим соответствующие образующие, откладывая на них высоты точек линии пересечения. Дальнейшее построение развертки цилиндра видно из чертежа (рис.). Развертка конуса представляет собой сектор круга радиуса L, с углом при вершине j = 360 R /L (рис.), где R — радиус основания конуса, L — образующая конуса. Для нанесения линии пересечения делим окружность основания на 12 равных частей, проводя затем через каждую точку деления соответствующие образующие. На определенном расстоянии от них строим дополнительные образующие через каждую точку линии пересечения. Поскольку, кроме очерковых фронтальных, образующие конуса представляют собой прямые общего положения, истинный размер расстояния от основания или вершины до лежащих на них точек можно получить, относя его к натуральным образующим, то есть пользуясь методом вращения. Способ концентрических сфер Этот способ применяется в случае, когда оси двух поверхностей вращения пересекаются под некоторым углом и находятся в плоскости, параллельной какой-либо плоскости проекций (особенно в том случае, когда на чертеже дана только одна проекция деталей). Шар со всякой поверхностью вращения, ось которой проходит через центр шара, пересекается по окружностям. Эти окружности находятся в плоскостях, перпендикулярных к оси поверхности вращения, и проецируются на одну из плоскостей проекций в виде прямых, в этом состоит преимущество способа сфер. На рис. 155 дана фронтальная проекция шара, пересекающегося с конусом и цилиндром. Как видно, центр шара находится на пересечении осей данных поверхностей, а линии его пересечения с ними — окружности диаметров: 1-2, 3-4, 5-6.
Пример. Даны конус и цилиндр, оси которых пересекаются под некоторым углом. Построить линию пересечения заданных поверхностей. Наивысшую и наинизшую точки 1 и 2 линии пересечения находят непосредственно в пересечении крайних образующих на фронтальной проекции заданных поверхностей.
Для нахождения промежуточных точек 3, 4, 5,... проводят из центра О” ряд вспомогательных концентрических сфер радиуса от R до R 1, которые рассекают заданные тела по окружностям. На фронтальной проекции эти окружности проецируются в прямые линии и, пересекаясь между собой, определяют точки линии перехода. Так, для нахождения точек 3 (одна из них невидима) проводят сферу радиуса R 1, которая пересечет цилиндр по окружности диаметра а” b ”, конус — по окружности диаметра c ”. В пересечении указанных окружностей определяются точки 3. Горизонтальные проекции этих точек находятся на окружности (параллели), проведенной из центра О' радиусом, равным c ” d ”/2. Все остальные промежуточные точки определяются аналогично. Так как пересекающиеся тела симметричны, их линия пересечения также симметрична. На фронтальной проекции невидимая часть линии пересечения сливается с видимой. Точки 4 (на горизонтальной проекции) служат границами раздела видимой и невидимой части линии пересечения. Найденные точки соединяют плавной кривой по лекалу. Способ эксцентрических сфер Указанный способ построения линии пересечения двух поверхностей состоит в применении вспомогательных сфер, имеющих различные центры. Приме р 1 (рис. 157).
В этом примере центры вспомогательных сфер можно брать в любой точке оси поверхности вращения. Поэтому построение линии пересечения в этом случае можно выполнить не только способом концентрических сфер, но и способом эксцентрических сфер. В примере проведены четыре сферы радиусов r1, r2, r3, r4 из различных центров О1, О2, О3, О4, расположенных на оси i поверхности вращения. Каждая из этих сфер пересекается с данными поверхностями по окружностям, точки пересечения которых и будут точками линии пересечения поверхностей. П риме р 2 (рис. 158). Даны усеченный конус и четверть кольца, оси которых пересекаются под углом 90о. Построить линию пересечения заданных поверхностей. Наивысшую и наинизшую точки 1 и 2 линии пересечения заданных поверхностей находят непосредственно в пересечении крайних образующих на фронтальной проекции. Для нахождения промежуточных точек 3 через центр кругового кольца проводят фронтально-проецирующую плоскость Р. Она пересечет кольцо по окружности; a ”— ее фронтальная проекция, которая находится на сфере, проведенной из центра О1. Проекцию О1 центра сферы находят на пересечении оси конуса и касательной t”О1 к направляющей окружности кольца в точке t”. Сфера с центом в точке О1 пересекает конус по окружности d ”.
В пересечении a ”и c ”получают две общие точки 3 и 31 линии пересечения. Промежуточные точки 4 и 5 определяют аналогично. Горизонтальные проекции точек 3, 4, 5 линии пересечения определяют при помощи фронтальной плоскости Q. Эта плоскость рассекает кольцо по параллели, что видно из чертежа. Точки 4 лежат на крайних образующих горизонтальной проекции конуса и служат границами раздела между видимой и невидимой частями линии пересечения. Найденные точки соединяют плавной кривой по лекалу. Часто этот способ называют способом скользящего шара. Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|