|
Схема настройки колебательного контура с помощью варикапа
Принцип работы схемы:
параллельное соединение ёмкостей Таким образом, можно настроить колебательный контур на нужную частоту. Разделительный конденсатор Высокоомный резистор Применение варикапа: · В схемах автоматической подстройки частоты (АПЧ). · В схемах частотной модуляции. · В параметрических усилителях. · В схемах настройки и перестройки колебательных контуров. Фотодиод Фотодиоды – это полупроводниковые диоды, преобразующие световую энергию в энергию электрическую. Обозначение: Изготавливают фотодиоды из германия и кремния. Работает фотодиод при обратном включении. Устройство: P-n переход помещается в металлический корпус со стеклянным окном. Принцип работы: Принцип работы фотодиода основан на внутреннем и внешнем фотоэффекте. Когда диод не освещен, в цепи протекает обратный темновой ток небольшой величины
(Используется при слабых световых (Используется при мощных потоках) световых потоках, например, солнечное излучение)
ЕВН
а) Пусть имеется поток фотонов с энергией б) Пусть освещение перехода отсутствует. В этом случае фотогенерация также будет отсутствовать, поэтому через переход суммарным полем будут перебрасываться в небольшом количестве ННЗ, образованные за счет генерации, и через диод будет протекать темновой ток Рассмотрим ве́нтильный режим: В этом режиме будут происходить те же самые процессы, что и в фотодиодном режиме, только переброс ННЗ через переход будет осуществляться исключительно за счет внутреннего поля Применение фотодиодов: · В вычислительной технике фотодиоды используют в устройствах ввода-вывода информации, т.к. фотодиоды обладают хорошей развязкой между входом и выходом (отсутствует электрическая связь между входом и выходом). · В кино-, фото-аппаратуре. · В оптронах в качестве фотоприёмников. · Вентили – в качестве солнечных батарей.
Светодиод Светодиоды – это полупроводниковые диоды, преобразующие электрическую энергию в световую. Обозначение:Пример: АЛ102Б, АЛ307А
Принцип работы: Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения W(эВ)
Для получения видимого излучения, необходимо, чтобы ширина запрещенной зоны находилась в пределах: Отсюда видно, что германий и кремний для изготовления светодиодов непригодны, т.к. они имеют ширину запрещенной зоны меньшую, чем необходимо для видимого излучения ( Для изготовления светодиодов применяется фосфид галлия (GaP), карбид кремния (SiC), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка (Ga, Al, As) или галлия, мышьяка, фосфора (Ga, As, P). Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета. Кроме светодиодов, дающих видимое свечение, используются светодиоды инфракрасного излучения на основе арсенида галлия (GaAs), у которого Конструктивно светодиоды выполняются: · В непрозрачных корпусах с линзой, обеспечивающей направленное излучение. · В прозрачном пластмассовом корпусе, создающем рассеянное излучение. · В бескорпусном варианте. Применение: Индикация, реле, датчики, пульты. Оптрон Оптрон – это полупроводниковый прибор, в котором конструктивно объединены фотоизлучатель и фотопроемник, между которыми существует оптическая связь. В качестве фотоизлучателя может выступать светодиод, а в качестве фотоприемника фотодиод, фототранзистор, фототиристор. Обозначение диодной пары: Тиристорная пара: Транзисторная пара:
Между фотоизлучателем и фотоприемником должна быть среда, которая играет роль световода. Световод должен быть прозрачен в рабочей области, обладать большим коэффициентом преломления, чтобы минимизировать потери света при многократном отражении от границ светодиода и световода. Большое распространение получили волоконные световоды (тонкие нити стекла или пластмассы (волокна). Светопроводящие волокна покрывают светоизолирующими материалами и соединяют в многожильные световые кабели, проводящие свет подобно тому, как многожильные металлические кабели проводят электрический ток. С помощью волоконной оптики можно получить большое количество каналов для передачи оптической информации. Волокна световода можно изгибать и скручивать, причем каждое волокно все равно будет передавать свой оптический сигнал, например определенный элемент изображения. Оптроны бывают с внутренней фотонной связью и с внешней фотонной связью. Оптрон с внутренней фотонной связью: 1- Фотоизлучатель 2- Световод 3- Фотоприемник Принцип работы: электрический сигнал поступает на фотоизлучатель (светодиод), где преобразуется в световой сигнал, который по световоду поступает на фотопремник. За счет внешнего фотоэффекта фотоприемник преобразует световой сигнал снова в электрический. Данный оптрон осуществляет преобразование: электрический сигнал – оптический сигнал – электрический сигнал. Применение: · усиление электрических сигналов; · обеспечение гальванической развязки между входом и выходом. Оптрон с внешней фотонной связью: 4 – фотоприемник 5 – усилитель 6 – фотоизлучатель Принцип действия: световой поток поступает на фотоприемник, где преобразуется в электрический сигнал, который усиливается усилителем и поступает на фотоизлучатель. В фотоизлучателе происходит обратный процесс (электрический сигнал преобразуется в световой). Данный оптрон осуществляет преобразование: оптический сигнал – электрический сигнал – оптический сигнал. Применение: · усиление оптических сигналов; · преобразование частоты оптических сигналов (на входе оптический сигнал одной частоты, на выходе – другой, например, сигнал инфракрасного или рентгеновского излучения преобразуется в сигнал видимого спектра). Достоинства оптронов: · отсутствие электрической связи между входом и выходом. Сопротивление изоляции между входом и выходом может достигать R=1014 Ом; · широкая полоса пропускаемых частот (ПП=0÷1014Гц); · высокая помехозащищенность оптического канала, т.е. его невосприимчивость к воздействию внешних электромагнитных полей; · высокое быстродействие (используется в качестве переключателя). Недостатки оптронов: · большая потребляемая мощность из-за того, что дважды происходит преобразование энергии, причем КПД этих преобразований невысок; · низкая температурная стабильность; · низкая радиационная стойкость; · заметное «старение», т.е. ухудшение параметров с течением времени; · относительно высокий уровень собственных шумов.
Транзисторы Биполярные транзисторы Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими p-n переходами и тремя выводами.
Биполярным транзистор называется потому, что его работа основана на использовании носителей заряда обоих знаков (электронов и дырок).
Биполярные транзисторы бывают p-n-p и n-p-n проводимости. В транзисторах p-n-p проводимости стрелка направлена к базе, основными носителями заряда являются дырки. В транзисторах n-p-n проводимости стрелка направлена от базы, основными носителями заряда являются электроны. И в том, и в другом случае стрелка указывает направление эмиттерного тока. Обозначение: Если транзистор рассматривать как узловую точку, тогда справедлив 1-й закон Кирхгофа (сумма входящих токов равна сумме выходящих), т.е.:
Из этого выражения вытекает:
![]() ![]() Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ![]() Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... ![]() Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ![]() ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|