Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Схема настройки колебательного контура с помощью варикапа





Принцип работы схемы:

С помощью потенциометра меняется обратное напряжение, подаваемое на варикап, следовательно, меняется барьерная емкость варикапа ( ), что приводит к изменению резонансной частоты колебательного контура: .

параллельное соединение ёмкостей

Таким образом, можно настроить колебательный контур на нужную частоту.

Разделительный конденсатор необходим, чтобы катушка индуктивности контура не закорачивала бы варикап по постоянному току. Поясним: Реактивное сопротивление катушки для постоянного тока стремится к нулю ( ) и определяется сопротивлением провода. Т.к. варикап подключен параллельно контуру, то при отсутствии разделительного конденсатора катушка закоротит варикап по постоянному току. Разделительный конденсатор постоянный ток не пропускает, т.к. его реактивное сопротивление для постоянного тока стремится к бесконечности ( ), следовательно, наличие в схеме разделительного конденсатора предотвращает короткое замыкание варикапа по постоянному току.

Высокоомный резистор необходим, чтобы не уменьшалась добротность контура за счет шунтирующего влияния потенциометра ( ).

Применение варикапа:

· В схемах автоматической подстройки частоты (АПЧ).

· В схемах частотной модуляции.

· В параметрических усилителях.

· В схемах настройки и перестройки колебательных контуров.

Фотодиод

Фотодиоды – это полупроводниковые диоды, преобразующие световую энергию в энергию электрическую.

Обозначение:

Изготавливают фотодиоды из германия и кремния. Работает фотодиод при обратном включении.

Устройство:

P-n переход помещается в металлический корпус со стеклянным окном.

Принцип работы:



Принцип работы фотодиода основан на внутреннем и внешнем фотоэффекте. Когда диод не освещен, в цепи протекает обратный темновой ток небольшой величины . При освещении фотодиода происходит фотогенерация пар НЗ (т.е. возникает внутренний фотоэффект – валентные электроны, получив световую энергию фотонов, переходят из ВЗ в ЗП). Проводимость диода при этом возрастает, следовательно, возрастает обратный ток фотодиода до значения . Разность между световым и темновым токами называется фототоком:

Фотодиод может включаться в схему как с внешним источником питания (фотодиодный режим), так и без него (ве́нтильный режим).

 

(Используется при слабых световых (Используется при мощных

потоках) световых потоках, например,

солнечное излучение)

Рассмотрим фотодиодный режим:

p n

ННЗ Ө

ЕВН ННЗ

ЕВНЕШН

UОБР

 

 

а) Пусть имеется поток фотонов с энергией . Образовавшиеся за счет фотогенерации НЗ диффундируют к переходу. Суммарное поле перехода ( ) является ускоряющим для ННЗ, поэтому ННЗ перебрасываются полем в соседние области, образуя световой ток .

б) Пусть освещение перехода отсутствует. В этом случае фотогенерация также будет отсутствовать, поэтому через переход суммарным полем будут перебрасываться в небольшом количестве ННЗ, образованные за счет генерации, и через диод будет протекать темновой ток небольшой величины.

Рассмотрим ве́нтильный режим:

В этом режиме будут происходить те же самые процессы, что и в фотодиодном режиме, только переброс ННЗ через переход будет осуществляться исключительно за счет внутреннего поля .

Применение фотодиодов:

· В вычислительной технике фотодиоды используют в устройствах ввода-вывода информации, т.к. фотодиоды обладают хорошей развязкой между входом и выходом (отсутствует электрическая связь между входом и выходом).

· В кино-, фото-аппаратуре.

· В оптронах в качестве фотоприёмников.

· Вентили – в качестве солнечных батарей.

 

Светодиод

Светодиоды – это полупроводниковые диоды, преобразующие электрическую энергию в световую.

Обозначение:Пример: АЛ102Б, АЛ307А

Светодиоды работают при прямом включении.

 

Принцип работы:

Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения .

W(эВ)

Ө

WП

hv

WВ

Для получения видимого излучения, необходимо, чтобы ширина запрещенной зоны находилась в пределах: .

Отсюда видно, что германий и кремний для изготовления светодиодов непригодны, т.к. они имеют ширину запрещенной зоны меньшую, чем необходимо для видимого излучения ( ).

Для изготовления светодиодов применяется фосфид галлия (GaP), карбид кремния (SiC), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка (Ga, Al, As) или галлия, мышьяка, фосфора (Ga, As, P).

Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета.

Кроме светодиодов, дающих видимое свечение, используются светодиоды инфракрасного излучения на основе арсенида галлия (GaAs), у которого . Они применяются в фотореле, различных датчиках, пультах, входят в состав некоторых оптронов.

Конструктивно светодиоды выполняются:

· В непрозрачных корпусах с линзой, обеспечивающей направленное излучение.

· В прозрачном пластмассовом корпусе, создающем рассеянное излучение.

· В бескорпусном варианте.

Применение:

Индикация, реле, датчики, пульты.

Оптрон

Оптрон – это полупроводниковый прибор, в котором конструктивно объединены фотоизлучатель и фотопроемник, между которыми существует оптическая связь.

В качестве фотоизлучателя может выступать светодиод, а в качестве фотоприемника фотодиод, фототранзистор, фототиристор.

Обозначение диодной пары: Тиристорная пара: Транзисторная пара:

 

Между фотоизлучателем и фотоприемником должна быть среда, которая играет роль световода. Световод должен быть прозрачен в рабочей области, обладать большим коэффициентом преломления, чтобы минимизировать потери света при многократном отражении от границ светодиода и световода.

Большое распространение получили волоконные световоды (тонкие нити стекла или пластмассы (волокна). Светопроводящие волокна покрывают светоизолирующими материалами и соединяют в многожильные световые кабели, проводящие свет подобно тому, как многожильные металлические кабели проводят электрический ток. С помощью волоконной оптики можно получить большое количество каналов для передачи оптической информации. Волокна световода можно изгибать и скручивать, причем каждое волокно все равно будет передавать свой оптический сигнал, например определенный элемент изображения.

Оптроны бывают с внутренней фотонной связью и с внешней фотонной связью.

Оптрон с внутренней фотонной связью:

1- Фотоизлучатель

2- Световод

3- Фотоприемник

Принцип работы: электрический сигнал поступает на фотоизлучатель (светодиод), где преобразуется в световой сигнал, который по световоду поступает на фотопремник. За счет внешнего фотоэффекта фотоприемник преобразует световой сигнал снова в электрический.

Данный оптрон осуществляет преобразование: электрический сигнал – оптический сигнал – электрический сигнал.

Применение:

· усиление электрических сигналов;

· обеспечение гальванической развязки между входом и выходом.

Оптрон с внешней фотонной связью:

4 – фотоприемник

5 – усилитель

6 – фотоизлучатель

Принцип действия: световой поток поступает на фотоприемник, где преобразуется в электрический сигнал, который усиливается усилителем и поступает на фотоизлучатель. В фотоизлучателе происходит обратный процесс (электрический сигнал преобразуется в световой).

Данный оптрон осуществляет преобразование: оптический сигнал – электрический сигнал – оптический сигнал.

Применение:

· усиление оптических сигналов;

· преобразование частоты оптических сигналов (на входе оптический сигнал одной частоты, на выходе – другой, например, сигнал инфракрасного или рентгеновского излучения преобразуется в сигнал видимого спектра).

Достоинства оптронов:

· отсутствие электрической связи между входом и выходом. Сопротивление изоляции между входом и выходом может достигать R=1014 Ом;

· широкая полоса пропускаемых частот (ПП=0÷1014Гц);

· высокая помехозащищенность оптического канала, т.е. его невосприимчивость к воздействию внешних электромагнитных полей;

· высокое быстродействие (используется в качестве переключателя).

Недостатки оптронов:

· большая потребляемая мощность из-за того, что дважды происходит преобразование энергии, причем КПД этих преобразований невысок;

· низкая температурная стабильность;

· низкая радиационная стойкость;

· заметное «старение», т.е. ухудшение параметров с течением времени;

· относительно высокий уровень собственных шумов.

 

Транзисторы

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими p-n переходами и тремя выводами.

 

Биполярным транзистор называется потому, что его работа основана на использовании носителей заряда обоих знаков (электронов и дырок).

 

Биполярные транзисторы бывают p-n-p и n-p-n проводимости. В транзисторах p-n-p проводимости стрелка направлена к базе, основными носителями заряда являются дырки. В транзисторах n-p-n проводимости стрелка направлена от базы, основными носителями заряда являются электроны. И в том, и в другом случае стрелка указывает направление эмиттерного тока.

Обозначение:

Если транзистор рассматривать как узловую точку, тогда справедлив 1-й закон Кирхгофа (сумма входящих токов равна сумме выходящих), т.е.:

 

– основное уравнение транзистора

Из этого выражения вытекает: - это максимальный ток транзистора.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.