Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Обусловленность систем линейных уравнений





Две на первый взгляд похожие системы линейных уравнений могут обладать различной чувствительностью к погрешностям задания входных данных. Это свойство связано с понятием обусловленности системы уравнений.

Числом обусловленности линейного оператора A, действующего в нормированном пространстве а также числом обусловленности системы линейных уравнений Ax = у назовем величину

Таким образом, появляется связь числа обусловленности с выбором нормы.

Предположим, что матрица и правая часть системы заданы неточно. При этом погрешность матрицы составляет d A, а правой части — d у. Можно показать, что для погрешности d x имеет место следующая оценка ( ):

 

 

В частности, если d A = 0, то

При этом решение уравнения Ax = у не при всех у одинаково чувствительно к возмущению d у правой части.

Свойства числа обусловленности линейного оператора:

1.

причем максимум и минимум берутся для всех таких x, что Как следствие,

2.

3

где и — соответственно минимальное и максимальное по модулю собственные значения матрицы A. Равенство достигается для самосопряженных матриц в случае использования евклидовой нормы в пространстве

4.

Матрицы с большим числом обусловленности (ориентировочно ) называются плохо обусловленными матрицами. При численном решении систем с плохо обусловленными матрицами возможно сильное накопление погрешностей, что следует из оценки для погрешности d x. Исследуем вопрос о погрешности решения, вызванной ошибками округления в ЭВМ при вычислении правой части. Пусть t — двоичная разрядность чисел в ЭВМ. Каждая компонента вектора правой части округляется с относительной погрешностью Следовательно,

Таким образом, погрешность решения, вызванная погрешностями округления, может быть недопустимо большой в случае плохо обусловленных систем.

 

Итак – принципиально остаются две проблемы –

1. не обеспечивается обоснованная сходимость алгоритма к единственной (в случае модельного примера- истинной) структуре и

2. Не разрешено противоречие о неадекватности моделей шаговой регрессии на новых точках, не участвовавших при оценке параметров модели. Возможно ли, если не обеспечить такую адекватность при других способах синтеза моделей, то хотя бы найти путь к решению такой задачи (возможно и адекватность определить другим способом)

.

Для АШР даже в случае применения для МНК оценки процедуры Грамма-Шмидта не разрешается вопрос о единственности модели – просто оценки параметров становятся наиболее точными и несмещенными

Т.о. гарантированное нахождение всего множества подходящих решений в реальных задачах (при - количество линейных входных аргументов и степени ПП p >3) получим только после полного

перебора всех подструктур полной структуры как в методе всех регрессий (у Дрейпера и Смита). Тогда мы найдем всете модели, в которых все аргументы входят с уровнем значимости не менее чем заданный. Со всеми выше описанными проблемами – а какая же из них, из этого множества та, которая действительно наша.

Можно еще добавить камень в огород АШР о неиспользуемой возможности вариации уровнем значимости для учета уровня шума в данных

Именно эту проблему предлагает решать МГУА с помощью введения понятия внешних критериев.

Необходимое примечание.

при все типы АШР МВИ, МГУА, другие целесообразные подходы, дают практически одинаково эффективные (или неэффективные) решения. Кривые критериев одинаково асимптотически стремятся к некоторому ненулевому уровню, при подходе к которому и определяется единственная модель.

Каждый из них это делает по своему, и определить адекватность метода по сходимости к нужной модели можно только построив соответствующий вашей задаче модельный пример.

Однако наиболее распространенный случай – это когда число точек невелико , тогда мы здесь решаем не переопределенную задачу (здесь точного решения нет и мы ищем среди плохих решений наилучшие), а близкую к определенной - вернее даже когда неизвестно, задача переопределена – определена или недоопределена. То есть включается сюда и совсем, казалось бы некорректная задача.

И наиболее эффективный подход к решению структурно-параметрического синтеза при данных условиях демонстрирует МГУА

 

Как видим нарушение уже первого условия порождает необходимомость разрешения проблемы множественности моделей не прибегая к процедуре полного перебора –надо предложить какой-то принцип, позволяющий найти путь к истинной или квазиистинной модели без полного перебора претендентов моделей.

 

Следующая проблема не менее реальна и еще более запутывает задачу поиска структуры. – проблема шума в данных – мы помним что при это нарушаются свойства проекционности аппарата МНК – нарушаются свойства оценок, но проблема в том что на зашумленных данных найти истинную структуру вообще может бытььпроблематично – если неизвестны х-ки шума и точки их приложения алгоритм будет тупо подстраиваться под шум.

Основная проблема – проблема необоснованности выбора структуры модели классическими АШГ многократно обостряется в связи с тем что порог используемый критерием Фишера в виде уровня значимости

на самом деле регулирует не только риск ошибки

– его выбор должен учитывать уровень шума и точки его приложения.

Ведь увеличение уровня шума например на выходе неизбено требует загрубить модель (не подстраивать ее под шум) а значит изменить уровень увеличить значимости с тем чтобы более жестко фильтровать апгументы в модель и ее упрощать.

Гораздо сложнее учесть шумы на входе тем более если они проходят нелинейное преобразование модели.

Однако методологически механизмов учета данных коррекций в агоритмах нет что делает выбор структур в условиях шума необоснованным.







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.