Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Основные бинарные и тройные диаграммы состояния систем, являющиеся основой расплавов пирометаллургических процессов. Применение диаграмм состояния для анализа пирометаллургических процессов





 

Рассмотрим вид и основные характеристики важнейших для цветной металлургии реальных систем: Fe-O, Cu-O, Fe-S и др., которые составляют основу многих руд, шлаковых и штейновых расплавов.

Фазовые диаграммы Me-O

Система Fe-O

Эта система является важнейшей, как для черной, так и для цветной металлургии. Именно поэтому ей посвящено наибольшее количество исследований, касающихся как фазового состава, так и свойств твердых фаз и расплавов.

T-X диаграмма, построенная по данным Даркена и Гурри, в настоящее время представляется наиболее надежной (рисунок 3.6).

 

 

Рисунок 3.6. Диаграмма Fe-O

 

 

Известны следующие модификации железа в твердом состоянии: α-Fe (устойчиво до 1041 К), β-Fe (1185-1667 K) и δ-Fe (1667-1811 K). При 1042 К железо претерпевает магнитное превращение (точка Кюри).

Поскольку, как отмечалось выше, абсолютно чистых веществ в системе Me-X не существует, то вблизи оси ординат диаграммы Fe-O существует область твердых растворов, увеличивающаяся с повышением температуры, однако, максимальная предельная растворимость кислорода не превышает сотых долей процента.

В системе железо-кислород известны три оксида: гематит Fe2O3, магнетит Fe3O4 и вюстит Fe1-XO. Все они, а особенно вюстит, обладают значительной областью гомогенности.

Стабильность ограничена пределом температуры в 843 К, ниже которой вюстит разлагается на металлическое железо и магнетит:

4FeO = Fe + Fe3O4

Избыточное содержание кислорода в вюстите по отношению к стехиометрии незначительно изменяется с ростом температуры от 973 до 1673 К на границе Fe- Fe1-XO (1,057 до 1,053) и несколько больше на границе Fe1-XO- Fe3O4 (1,094-1,197).

Содержание кислорода при 16673 К в гомогенном твердом вюстите возрастает от 23,18 до 25,54 % (по массе).

Второе химическое соединение – магнетит, до 1073 К имеет очень узкую область гомогенности. Выше этой температуры область гомогенности расширяется. Причем, левая сторона области гомогенности практически точно совпадает с составом стехиометрического Fe3O4. Справа о этой области состав магнетита выше 1073 К можно представить формулой Fe3-XO4.

Значительно меньше данных о фазовом состоянии гематита, особенно в области высоких температур. Можно с определенной уверенностью говорить о том, что правая сторона области гомогенности гематита вплоть до высоких температур близка по составу к стехиометрии Fe2O3. Левая сторона как будто бы имеет отклонение влево. О причине разупорядоченности в структуре гематита достаточно надежные сведения отсутствуют. При комнатных температурах область гомогенности гематита, по-видимому, невелика и для технологических расчетов металлургических процессов его состав можно принять близким к стехиометрическому - Fe2O3.

На фазовой диаграмме Fe-O имеется ряд одно- и двухфазных областей, где в равновесии находятся конденсированные фазы и газ с определенной концентрацией кислорода. К однофазным системам относятся: Fe-вюстит, вюстит- магнетит, железо-магнетит, расплав-конденсированные фазы, магнетит-гематит.

Система Cu-O

В системе Cu-O образуется два химических соединения Cu2-XO, которому отвечает природный минерал куприт, и оксид меди CuO (природный минерал тенорит) (рисунок 3.7.). Так же как и вюстит Cu2-XO может существовать в определенном температурном интервале (375-1200 °С, При охлаждении ниже температуры 375 °С протекает реакция дисропорционирования:

Cu2O = Cu + CuO

При этом образуется медь, насыщенная кислородом, и оксид меди, отвечающий по составу медному краю области гомогенности. Монооксид меди сравнительно малоустойчивое вещество, хотя и плавится без разложения. Область его существования в жидком виде сравнительно невелика.

Монооксид меди и металлическая медь ограниченно растворимы друг в друге. Область расслаивания занимает значительную часть диаграммы.

Эвтектика медь – монооксид меди содержит 1,85 % O и имеет температуру плавления 1065 °С.

Оксид меди соединение неустойчивое. Оно полностью разлагается на воздухе при 1122 °С, т.е. горизонталь 1120 отвечает нонвариантному равновесию следующих фаз: CuOтв., жидкость, содержащая 14 % O, и газовая фаза. Области устойчивости различных фаз в зависимости от PO2 и T приведены на рисунке 3.7. В связи с малым масштабом области гомогенности показаны одной линией. Однако это не свидетельствует об отсутствии областей переменного состава. В частности, для Cu2-XO так же, как и для Fe1-XO, наиболее характерными дефектами являются вакансии в подрешетке меди, а область гомогенности следует рассматривать как раствор вакансий меди в решетке Cu2-XO.

 

 

Рисунок 3.7. Диаграмма Cu-O

 

Фазовые диаграммы Me-S

Сульфидные руды являются основным сырьем металлургии тяжелых цветных металлов. Нередко они содержат большое количество сульфидов железа. В процессе пирометаллургической переработки концентратов довольно часто в качестве промежуточного продукта получают штейны – сплав сульфидов железа и цветных металлов. Поэтому для сознательного управления технологическим процессом металлургу необходимо знать важнейшие фазовые диаграммы сульфидных систем.

Система Fe-S

На рисунке 3.8 представлена T-X- проекция диаграммы Fe-S

 

 

 

 

Рисунок 3.8 Диаграмма Fe-S

 

В системе железо-сера существует одно устойчивое химическое соединение - пирротин (Fe1-xS) с широкой областью гомогенности, и одно неустойчивое – пирит FeS2, у которого область гомогенности невелика.

Формула сульфида железа Fe1-xS, откуда можно сделать вывод, что в кристаллической решетке атомов железа меньше, чем серы, на величину x, т.е. концентрация вакансий железа равна x. Кристаллы, составы которых отвечают железному краю области гомогенности, близки к стехиометрическим - отношение железа к сере в них 1. На серном крае области гомогенности содержание серы при температуре 743 (по другим данным 745) °С достигает 54,5 % (ат.). Следовательно, почти 10 % узлов железа оказываются незаполненными.

Согласно правилу фаз, каждой точке внутри области пирротина соответствует строго определенное равновесное давление серы. Возьмем, например, точку E. Задав точку на диаграмме состояния мы тем самым определим состав и температуру. Из правила фаз следует, что в области 1 число степеней равно 2. Но для точки E характерны определенные состав твердой фазы и температура, следовательно, эти две степени свободы использованы, поэтому над системой должно быть строго определенное давление серы. Произвольное изменение давления поведет к перемещению положения точки, определяющей состояние системы, т.е. к нарушению равновесия, в результате чего начнет протекать химическая реакция.

Показать области с одной степенью свободы (нонвариантные), в которых каждой температуре отвечает строго постоянный состав фаз и равновесное давление серы. При перемещении по изотерме фигуративной точки, определяющей состав системы, не меняются ни состав, ни число находящихся в равновесии фаз, ни равновесное давление. Изменяется лишь количественное отношение фаз, которое легко может быть рассчитано по правилу рычага.

Горизонталь 745 °С соответствует нонвариантному равновесию Fe1-xS (показать состав), пирита (показать состав), жидкости и пара. Изменение одного из независимых параметров поведет к исчезновению одной из конденсированных фаз. Например, нагревание системы, отвечающей составу новариантного равновесия, приведет к исчезновению пирита и образованию пирротина серного края его области гомогенности. Охлаждение системы – к исчезновению жидкости. При незначительном уменьшении давления серы против равновесного полностью исчезают жидкость и пирит.

Приведенными примерами продемонстрировано, какую ценную информацию могут дать диаграммы состояния для суждения о возможных процессах и составе получающихся фаз. Мало того, не зная диаграммы состояния далеко не всегда можно предсказать, какой процесс будет протекать в тех или иных условиях и каков будет состав конечных продуктов. Допустим, что необходимо сульфидированием пирротина получить пирит. Допустим также, что экспериментатор решил проводить этот процесс при 750 °С. Достаточно взглянуть на диаграмму, чтобы убедиться, что этих условиях получить пирит принципиально невозможно. Повышение давления пара серы над пирротином приведет лишь к тому, что весь материал перейдет в жидкое состояние. Получение пирита следует проводить при температуре <745 °С. При этом достаточно небольшого повышения давления серы, чтобы после необходимой выдержки весь пирротин перешел в пирит. Это простейший пример. Более трудные случаи могут встретиться при рассмотрении процессов окисления или восстановления в системах, в которых образуется целый ряд соединений.

Кроме фазовых превращений, на которых мы остановились достаточно подробно, диаграмма состояния дает ценную информацию о температурах плавления. В частности, для системы железо-сера температура плавления пирротина составляет по данным ряда исследований 1200 °С. Температура плавления эвтектики со стороны железа 983 °С. Это говорит о том, что сульфиды относительно легкоплавкие соединения.

Экспериментальные данные, полученные рядом авторов показывают, что давление паров серы (кислорода) над сульфидами (оксидами) резко возрастают в зависимости от их состава. Например, при температуре 900 °С равновесное давление серы над пирротином для граничных составов отличается в 109 раз

Составы минералов (пирита, халькопирита, сфалерита и др.), взятые из разных месторождений или участков одного и того же месторождения, будут отличаться по составу и свойствам. Недооценка этого различия может приводить к серьезным ошибкам в расчетах и в выборе технологических режимов, поскольку даже незначительные изменения в составах (0,01; 0,001 %) могут резко сказываться на флотируемости, растворимости и других технологических свойствах минералов.

Система Cu-S

В системе медь-сера (рисунок 3.9) также имеются два химических соединения: высший CuS и низший Cu2S сульфиды.

 

 

 

Рисунок 3.9. T-X проекция фазовой диаграммы Cu-S (а) и равновесное давление серы (б)

 

Высший сульфид меди – ковеллин относится к неустойчивым химическим соединениям. При температуре 507 °С он полностью разлагается, при 120 °С претерпевает полиморфное превращение.

Низший сульфид меди образует довольно широкую область гомогенности. Значение x в формуле соединения Cu2-xS.







ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.