Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Энергетическая светимость. Испускательная и поглощательначя способности. Абсолютно черное тело





Энергетическая светимость тела RТ, численно равна энергии W, излучаемой телом во всем диапазоне длин волн (0<l<¥) с единицы поверхности тела, в единицу времени, при температуре тела Т, т.е.

(1)

Испускательная способность тела rl численно равна энергии тела dWl, излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от lдо l +dl, т.е.

(2)

Эту величину называют также спектральной плотностью энергетической светимости тела.

Энергетическая светимость связана с испускательной способностью формулой

(3)

Поглощательная способность тела al,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l +dl, т.е.

. (4)

Тело, для которого al ,T=1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al ,T=const<1 во всем диапазоне длин волн называют серым.

 

Закон Кирхгофа  
 

 

Введем некоторые характеристики теплового излучения.

Поток энергии (любых частот), испускаемый единицей поверхности излучающего тела в единицу времени во всех направлениях (в пределах телесного угла 4π), называется энергетической светимостью тела (R) [ R ] = Вт/м2.

Излучение состоит из волн различной частоты (ν). Обозначим поток энергии, испускаемой единицей поверхности тела в интервале частот от ν до ν + dν, через d R ν. Тогда при данной температуре

  ,    

где- спектральная плотность энергетической светимости, или лучеиспускательная способность тела.

Опыт показывает, что лучеиспускательная способность тела зависит от температуры тела (для каждой температуры максимум излучения лежит в своей области частот). Размерность.

Зная лучеиспускательную способность, можно вычислить энергетическую светимость:

    (1.2.1)  

Пусть на элементарную площадку поверхности тела падает поток лучистой энергии, обусловленный электромагнитными волнами, частоты которых заключены в интервале dν. Часть этого потока будет поглощаться телом. Безразмерная величина

    (1.2.2)  

называется поглощательной способностью тела. Она также сильно зависит от температуры.

По определению не может быть больше единицы. Для тела, полностью поглощающего излучения всех частот,. Такое тело называется абсолютно черным (это идеализация).

Тело, для которого и меньше единицы для всех частот, называется серым телом (это тоже идеализация).

Между испускательной и поглощательной способностью тела существует определенная связь. Мысленно проведем следующий эксперимент (рис. 1.1).


Рис. 1.1

Пусть внутри замкнутой оболочки находятся три тела. Тела находятся в вакууме, следовательно обмен энергией может происходить только за счет излучения. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия (все тела и оболочка будут иметь одну и ту же температуру).

В таком состоянии тело, обладающее большей лучеиспускательной способностью, теряет в единицу времени и больше энергии, но, следовательно это тело должно обладать и большей поглощающей способностью:

  .    

 

  Кирхгоф Густав Роберт (1824–1887) – немецкий физик. Работы посвящены электричеству, механике, гидродинамике, математической физике, оптике, гидродинамике. Построил общую теорию движения тока в проводниках. Развил строгую теорию дифракции. Установил один из основных законов теплового излучения, согласно которому отношение испускательной способности тела к поглощательной не зависит от природы излучающего тела (закон Кирхгофа).

Густав Кирхгоф в 1856 году сформулировал закон и предложил модель абсолютно черного тела.

Отношение лучеиспускательной к поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией частоты и температуры.

  , (1.2.3)  

где – универсальная функция Кирхгофа.

Эта функция имеет универсальный, или абсолютный, характер.

Сами величины и, взятые отдельно, могут изменяться чрезвычайно сильно при переходе от одного тела к другому, но их отношение постоянно для всех тел (при данной частоте и температуре).

Для абсолютно черного тела, следовательно, для него, т.е. универсальная функция Кирхгофа есть не что иное, как лучеиспускательная способность абсолютно черного тела.

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощающую способность,, но только в ограниченном интервале частот. Однако полость с малым отверстием очень близка по своим свойствам к абсолютно черному телу. Луч, попавший внутрь, после многократных отражений обязательно поглощается, причём луч любой частоты (рис. 1.2).


Рис. 1.2

Лучеиспускательная способность такого устройства (полости) очень близка к f (ν, ,T). Таким образом, если стенки полости поддерживаются при температуре T, то из отверстия выходит излучение весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре.

Разлагая это излучение в спектр, можно найти экспериментальный вид функции f (ν, ,T)(рис. 1.3), при разных температурах Т 3 > Т 2 > Т 1.


Рис. 1.3

Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Эти кривые одинаковы для всех тел.

Кривые похожи на функцию распределения молекул по скоростям. Но там площади, охватываемые кривыми, постоянны, а здесь с увеличением температуры площадь существенно увеличивается. Это говорит о том, что энергетическая совместимость сильно зависит от температуры. Максимум излучения (излучательной способности) с увеличением температуры смещается в сторону больших частот.

Законы теплового излучения

Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.

Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:

ε = σ T 4.

Модель 2.7. Излучение абсолютно черного тела

Этот закон носит название закон Стефана–Больцмана. Константа σ = 5,67∙10–8 Вт/(м2∙К4) получила название постоянной Стефана–Больцмана.

Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны

Этот закон получил название закон Вина. Так, для Солнца Т0 = 5 800 К, и максимум приходится на длину волныλmax ≈ 500 нм, что соответствует зеленому цвету в оптическом диапазоне.

С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.

Фотоэффект. Фотоны

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

Рисунок 5.2.1. Схема экспериментальной установки для изучения фотоэффекта

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Рисунок 5.2.2. Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н1 и I н2 – токи насыщения, U з – запирающий потенциал

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает | eU |. Если напряжение на аноде меньше, чем – U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина U з оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5.2.3).

Рисунок 5.2.3. Зависимость запирающего потенциала U з от частоты ν падающего света

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию h νодному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта.

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e:

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10–19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

h = 4,136·10–15 эВ·с.

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λкр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов.

Энергия фотонов равна

E = h ν.

Фотон движется в вакууме со скоростью c. Фотон не имеет массы, m = 0. Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,

E 2 = m 2 c 4 + p 2 c 2,

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Модель. Фотоэффект

 







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.