Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Зависимость геометрической конфигурации от координационного числа





Координационное число Геометрическая конфигурация
  Линейная
  Треугольная
  Плоская квадратная
Тетраэдрическая
  Тригональная бипирамида
  Октаэдрическая
  Пентагональная бипирамида
  Квадратная антипризма

 

Для комплексных соединений свойственна изомерия. Изомеры - вещества одинаковые по составу, но имеющие разное строение. Существуют различные типы изомеров. Прежде всего, в ыделяют геометрическую изомерию или цис–транс – изомерию. Примеры: [Pt(NH3)2Cl2]2+ ; [Cr(NH3)4Cl2]+.

NH3 Cl- NH3 Cl-

 

Pt Pt

 

NH3 Cl- Cl- NH3

цис-изомер транс-изомер

(оранжево-желтый) (слабо-желтый)

Изомеры [Pt(NH3)2Cl2]2+

 

К геометрической изомерии можно отнести и зеркальную (оптическую) изомерию. Когда один комплекс является зеркальным изображением другого. Изомеры – зеркальными изомерами или оптическими антиподами

Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.

Гидратная изомерия имеет место при переходе воды из внутренней сферы во внешнюю, например, [Cr(H2O)6]Cl3, [Cr(H2O)5Cl]Cl2×H2O, [Cr(H2O)4Cl2]Cl×2H2O. При этом цвет комплекса меняется от сине-фиолетового до светло-зеленого.

Ионизационная изомерия определяется различным распределением ионов между внутренней и внешней сферами, например, [Co(NH3)5Br]SO4 (красно-фиолетовый), [Co(NH3)5SO4]Br (красный). Первая соль образует осадок белого цвета с Ва2+-ионами; вторая – осадок желтого цвета с Аg+-ионом.

Координационная изомерия связана с переходом лигандов от одного комплексообразователя к другому (встречается у бинарных соединений), например, [Co(NH3)6][Cr(CN)6] и [Cr(NH3)6][Co(CN)6]

Диссоциация комплексных соединений в растворах.

Константа нестойкости. Константа устойчивости

 

В растворах комплексных соединений существует сложная система динамических равновесий, зависящая как от природы комплекса, так и природы растворителя. Водные растворы комплексных соединений являются электролитами. Диссоциацию комплексных соединений следует рассматривать с двух сторон:

а) первичная диссоциация. Комплексное соединение под действием растворителя распадается на комплексный ион и ионы внешней сферы. Диссоциация протекает по типу сильных электролитов, например

K3[AlF6] ↔ 3K+ + [AlF6]3-

б) вторичная диссоциация. Комплексный ион диссоциирует по типу слабых электролитов, то есть в незначительной мере

[AlF6]3- ↔ Al3+ + 6F-

Применяя закон действующих масс, запишем выражение для константы равновесия, которая для данной системы будет называться константой нестойкости (Кн) комплексного иона

Кн =[Al3+]× [F]6/ [[AlF6]3–].

Константа нестойкости характеризует каждый комплексный ион и является мерой устойчивости комплекса. Чем устойчивее комплексный ион, тем меньше его константа нестойкости. Так, среди однотипных соединений, обладающих различными значениями констант нестойкости

[Ag(NO2)2]- Kн =1.3×10-3

[Ag(NH3)2]+ Kн =6.8×10-8

[Ag(CN)2]- Kн =1×10-21, наиболее устойчив комплекс [Ag(CN)2]-.

В последнее время для характеристики комплексных соединений предпочитают пользоваться величиной, обратной константе нестойкости, называемой константой устойчивости (Ку) Ку = 1/Кн.

У ряда соединений, которые рассматриваются как комплексные, константы нестойкости настолько высоки, что концентрации составляющих частиц оказываются больше концентрации комплексного иона. К таким соединениям относятся двойные соли, которые в твердом состоянии имеют координационную структуру, а в растворе в значительной мере распадаются на составные ионы, например

K2[CuCl4] ↔ 2K+ + [CuCl4]2- ↔ 2K+ + Cu2+ + 4Cl-.

В умеренно разбавленных растворах этой соли существуют как комплексные, так и простые ионы. Дальнейшее разбавление приводит к полному распаду комплексных ионов [CuCl4]2-.

Известны соли, которые занимают промежуточное положение между типичными двойными и типичными комплексными солями, например KPbI3. Эта соль в концентрированном водном растворе существует в виде простого иона К+ и комплексного иона [PbI3]-. При разбавлении раствора этой соли комплексный ион распадается на I- и PbI2, который выпадает в осадок.

 

Связь в комплексных ионах

 

Что удерживает атомы в комплексном ионе? Существуют два возможных ответа. В некоторых комплексах, например в ионе [AlF6]3- связь между атомами обусловлена взаимным притяжением положительного иона Al3+ и отрицательно заряженных ионов F-. Следовательно, связь ионная. В других комплексных ионах, таких как [Fe(CN)6]3 -, налицо заметное обобщение электронов центрального атома-комплексообразователя и окружающих его групп. Следовательно, связь в основном ковалентная. При таком обобщении электрон или электронная пар присоединяющейся группы часть времени находится на орбите, принадлежащей центральному атому. В других случаях электронная пара образуется обоими атомами, участвующими в образовании химической связи.

Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (МВС). МВС для описания комплексных соединений разработал и предложил Л. Полинг. Основные положения его теории:

1) связь между комплексообразователем и лигандами донорно-акцепторная. Прочность связи зависит от степени перекрывания орбиталей;

2) орбитали комплексообразователя подвергаются гибридизации, что определяет пространственное строение комплекса;

3) дополнительное упрочнение комплекса обусловлено тем, что наряду с σ-связями могут возникать и π-связи;

4) магнитные свойства, комплексных соединений, объясняются наличием или отсутствием неспаренных электронов.

Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная s-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т.е. содержащими неподеленные пары электронов, орбиталями лигандов (доноров). Максимально возможное число s-связей определяет координационное число комплексообразователя.

Поскольку при одинаковых лигандах образующиеся s-связи равноценны, то образование комплексной частицы сопровождается гибридизацией акцепторных орбиталей комплексообразователя. При координационном числе 4 чаще всего реализуется sp3 – гибридизация, что соответствует тетраэдрической координации лигандов, или dsp2 – гибридизация, отвечающая плоско-квадратной координации лигандов. Так, в комплексе [Zn(NH3)4]2+, ион Zn2+ является комплексообразователем. Нейтральный атом цинка имеет электронную структуру: 4s23d104p04d0; а ион Zn2+: 4s03d104p04d0. Таким образом, ион цинка предоставляет для электронных пар лигандов (условно показанных на схеме точками) одну 4s- и три 4p- орбитали.

[Zn(NH3)4]2+

причем осуществляется sp3–гибридизация, ион [Zn(NH3)4]2+ обладает диамагнитными свойствами, так как нет неспаренных электронов.

Ионы d–элементов с четырьмя занятыми d–орбиталями (Pt2+, Pd2+, Au3+) при координационном числе 4 предоставляют для электронных пар лигандов одну d-, одну s- и две p-орбитали, например, в комплексе [Pt(NH3)4]2+, комплексообразователем является ион Pt2+. Нейтральный атом имеет электронную структуру: 6s14f145d96p06d0, а ион Pt2+: 6s04f145d86p06d0

Лиганды NH3 связываясь с комплексообразователем, вызывают перераспределение электронов на его орбиталях.

При этом осуществляется dsp2 -гибридизация. Комплекс [Pt(NH3)4]2+ - диамагнитен и в рамках МВС является внутриорбитальным.

При координационном числе 6 осуществляется октаэдрическая координация лигандов, которая определяется d2sp3 – или sp3d2 – гибридизацией. Такая координация имеет место, например в комплексе [Ni(NH3)6]2+. Комплексообразователем является ион Ni2+. Нейтральный атом никеля имеет электронную структуру: 4s23d84p04d0, а ион Ni2+ имеет следующую электронную конфигурацию: 4s03d84p04d0.

Лиганды NH3, входящие в состав комплексного иона, не вызывают перераспределения электронов комплексообразователя и образуют донорно-акцепторные связи с ним, используя свободные орбитали. Осуществляется sp3d2–гибридизация, ион [Ni(NH3)6]2+ обладает парамагнитными свойствами, то есть имеет два неспаренных электрона, которые придают повышенную реакционную способность и в рамках МВС относится к группе внешнеорбитальных комплексов.

Координационному числу 2 отвечает гибридизация sp–типа и линейная координация лигандов, например, в комплексе [Ag(NH3)2]+

Рассмотренные примеры показывают, что МВС успешно объясняет определенные значения координационных чисел, геометрические формы комплексных частиц и магнитные свойства комплексных соединений.

С точки зрения МВС нельзя объяснить строение многих комплексных соединений, например «сандвичевых». Наиболее плодотворным в теории комплексных соединений, ведущим в настоящее время стал ММО. Молекулярные орбитали в комплексных соединениях образуются по тому же принципу и обладают теми же свойствами, что и молекулярные орбитали в двухатомных молекулах. Отличие их заключается в том, что молекулярные орбитали в комплексных соединениях являются многоцентровыми, делокализованными.

Теория кристаллического поля основана на представлениях об электростатической природе взаимодействия между центральным атомом и лигандами. Однако, в отличие от простой ионной теории, здесь учитывается различное пространственное расположение d-орбиталей и связанное с этим различное изменение энергии d-электронов центрального атома, вызываемое их отталкиванием от электронных облаков лигандов. Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить сам факт образования некоторых комплексов, например, так называемых «сандвичевых»- дибензолхрома ферроцена и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный атом, не принимает во внимание участия электронов лигандов в образовании химических связей с ним. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным типом связи между центральным атомом и лигандами.







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.