Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Аналоги зарубежных сталей обыкновенного качества





Россия (ГОСТ) Германия (DIN) США (ASTM) Япония (JIS) Китай (GB)
Ст2сп RSt34-2- К02502 - Q215A
Cт3Гпс, Ст5Гпс St52-3I S235J2G3 A572/42 SM41B -
Cт3Гпс - A131/B, A573/58 SM41B -
Ст2кп, Ст2пс Rst34-2 - SS34 Q215
Ст3сп RSt37-2 A283/C - -
Ст3кп, Ст3пс Ust37-2 A283/C - -
Ст4сп Ust42-2 St44-2 А283/D, A131/A SS41, SM41A -
Ст5сп St50-2 - SS50   Q275
Ст6сп St60-2 - - -

 

Углеродистые качественные стали поставляют в виде проката, поковок и других полуфабрикатов с гарантированным химическим составом и механическими свойствами.

Эти стали маркируются двухзначными числами 05, 08, 10, 15, 20, …, 85, обозначающими среднее содержание углерода по массе в сотых долях процента (ГОСТ 1050).

Спокойные стали маркируют без индекса, полуспокойные и кипящие – с индексом.

Качественные стали для станков – автоматов маркируют с указание буквы А впереди: А11, А12, А20.

Качественные стали для котлов маркируют с указание буквы «К» позади: 12К, 15К…и т. д.

Низкоуглеродистые стали 05, 08, 10 применяют для холодной штамповки различных изделий.

Без термической обработки в горячекатаном состоянии их используют для шайб, прокладок, кожухов и других деталей, изготавливаемых холодной деформацией и сваркой.

Стали 15, 20, 25 – цементуемые, предназначены для деталей небольшого размера, от которых требуется твердая, износостойкая поверхность и вязкая сердцевина (кулачки, шестерни и т. д.), а также горячекатаные и после нормализации для изготовления деталей машин и приборов невысокой прочности (крепежные детали, втулки, штуцеры, трубы, змеевики и т. д.).

Среднеуглеродистые стали 30…55 применяют после улучшения для изготовления деталей небольшого размера, работоспособность которых определяется сопротивлением усталости (шатуны, коленчатые валы, оси и т. п.).

Стали 40 … 50 после нормализации и поверхностной закалки применяют для изготовления крупных деталей, работающих при невысоких циклических и контактных нагрузках, например, валы, ходовые винты, кулачки распределительных валиков и т. д.

Стали с высоким содержанием углерода (60 … 85), а также с увеличенным содержанием марганца (60Г, 65Г и 70Г) преимущественно применяют в качестве рессорно-пружинных после закалки и среднего отпуска, а также для прокатных валков, шпинделей станков и других крупных деталей после нормализации.

Соответствие некоторых отечественных марок конструкционных сталей с зарубежными аналогами представлены в таблице 3.2.

Таблица 3.2

Аналоги зарубежных углеродистых сталей

Страны СНГ (ГОСТ) Евронормы США (стандарты) Япония (JIS) Китай (GB)
  С10Е (1.1121)*   S10C  
  С15Е (1.1141)*   S15C  
  С22Е (1.1151)*   S20C  
  С25Е (1.1158)*   S25C  
  С30Е (1.1178)*   S28C  
  С35Е (1.1181)*   S35C ML35
  С40Е (1.1186)*   S40C  
  С45Е (1.1191)*   S48C 45H
  С50Е (1.1206)*   S50C  

Примечание: * - цифровое обозначение.

Контрольные вопросы:

1. Каким параметром характеризуются доэвтектоидные, эвтектоидные и заэвтектоидные стали?

2. Какие марки сталей применяются для холодной штамповки?

3. Как классифицируются стали по степени раскисления?

4. Какие марки сталей относятся к улучшаемым после закалки?

5. Что означает буква «Ш» в конце марки стали?

6. Что обозначает буква перед маркой стали Ст3кп?

7. С какой целью проводят раскисление сталей?

8. Как классифицируются стали по качеству?

9. Какие существуют аналоги зарубежных сталей отечественным марка?

Чугуны.

При весьма медленном охлаждении и наличии графитизирующих добавок (Si, Ni и др.) железо – углеродистые сплавы могут кристаллизоваться в соответствии с диаграммой железо – графит.

Диаграмма состояния железо – графит (показана на рис. 3.3 пунктирными линиями) отличается от диаграммы состояния железо – цементит тем, что эвтектика образуется при температуре 1153 °С и содержит 4,26 % С в виде графита.

Эвтектоидное превращение протекает при температуре 738 °С, причем эвтектоидная точка соответствует 0,7 % С. Эвтектоид состоит из феррита и графита. В интервале температур 1153 … 738 °С из аустенита выпадает вторичный графит. При этом состав аустенита изменяется по линии E/S/. Состав жидкой фазы при кристаллизации первичного графита меняется по линии C/D/.

Кристаллы первичного графита и графита эвтектики имеют сложную форму в виде лепестков, выходящих из одного центра. Вторичный графит и графит эвтектоида, как правило, выделяется на лепестках первичного и эвтектического графита.

В плоскости шлифа графит имеет вид прямолинейных или искривленных пластинок, которые представляют собой различные сечения графитных лепестков (рисунок 3.3, а).

 

Рисунок 3.3. Схема микроструктуры чугунов: а – серый чугун;

б – высокопрочный чугун; в – ковкий чугун

 

Графит придает сплавам железо – углерод серый цвет, поэтому чугун, образованный согласно диаграмме состояния железо – графит называют серым.

Из-за большого количества цементита белые чугуны тверды (НВ = 4500…5500 МПа), хрупки и для изготовления деталей машин не применяются. Ограниченное применение имеют отбеленные чугуны – отливки из серого чугуна со слоем белого чугуна в виде твердой корки на поверхности. Из них изготавливают прокатные валки, лемехи плугов, тормозные колодки, шары для мельниц и другие детали, работающие на износ.

В промышленности широко применяют литейные серые, высокопрочные и ковкие чугуны, в которых весь углерод или часть его (половинчатый чугун) находится в виде графита.

Графит обеспечивает пониженную твердость, хорошую обрабатываемость резанием, а также высокие антифрикционные свойства вследствие низкого коэффициента трения. Вместе с тем включения графита снижают прочность и пластичность, т. к. нарушают сплошность металлической основы сплава.

По химическому составу серые чугуны разделяют на обычные и легированные. Обычные серые чугуны содержат основные элементы Fe-C-Si и постоянные примеси Mn, P и S. Содержание углерода 2,2…3,7 %, кремния – 1…3 %, марганца – 0,2…1,1 %, фосфора – 0,02…0,3 %, серы – 0,02…0,15 %.

В зависимости от состава и скорости охлаждения отливки структура металлической основы серого чугуна может быть различной. Различают три вида серых чугунов:

1) Перлитный серный чугун, имеющий в структуре перлит и графит, количество связанного углерода составляет ~ 0,8 %.

2) Ферритно-перлитный серый чугун, имеющий ферритно-перлитную основу, количество связанного углерода менее 0,8 %.

3) Ферритный серый чугун, имеющий ферритную основу, весь углерод находится в виде графита.

Прочность, твердость и износостойкость растут с увеличением количества перлита.

Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры, показывающей значение временного сопротивления при растяжении в кгс/мм2. Например, чугун СЧ 25 имеет ферритно-перлитную основу и sв = 25 кгс/мм2» 250 МПа.

Ферритные серые чугуны (СЧ 10, СЧ 15, СЧ 18) предназначены для слабо- и средненагруженных деталей: крышки, фланцы, маховики, корпуса редукторов, подшипников, насосов, суппорты, тормозные барабаны, диски сцепления и пр.

Ферритно-перлитные серые чугуны (СЧ 20, СЧ21, СЧ 25) применяют для деталей, работающих при повышенных статических и динамических нагрузках: блоки цилиндров, картеры двигателя, поршни цилиндров, барабаны сцепления, станины различных станков, зубчатые колеса и другие отливки.

Перлитные серые модифицированные чугуны (СЧ 30, СЧ 35, СЧ 40, СЧ 45) используют для деталей, работающих при высоких нагрузках или в тяжелых условиях износа: зубчатые колеса, гильзы блоков цилиндров, шпиндели, распределительные валы и др.

Для деталей, работающих при повышенных температурах, применяют легированные серые чугуны: жаростойкие, содержащие дополнительно Cr и Al, и жаростойкие, содержащие дополнительно Cr, Ni и Mo.

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500…600 °С в течение 2…10 ч с последующим охлаждением с печью.

Высокопрочными называют чугуны, в которых графит имеет шаровидную форму (рисунок 3.3, б).

Их получают модифицированием магнием, который вводят в жидкий чугун в количестве 0,02…0,08 %. Ввиду того, что модифицирование чугунов чистым магнием сопровождается сильным пироэффектом, чистый магний заменяют лигатурами (например, сплавом магния и никеля).

Чугун после модифицирования имеет следующий химический состав: 3,0…3,6 % С; 1,1…2,9 %Si; 0,3…0,7 % Mn; до 0,02 % S и до 0,1 % P. По структуре металлической основы высокопрочный чугун может быть ферритным (до 209 % перлита) или перлитным (до 20 % феррита).

Шаровидный графит – менее сильный концентратор напряжений, чем пластинчатый графит, и поэтому меньше снижает механические свойства металлической основы. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью. Маркируют высокопрочные чугуны по пределу прочности в кгс/мм2 и относительному удлинению в процентах (%), например, ВЧ 50-7, ВЧ 120-2.

Высокопрочные чугуны применяют в различных отраслях техники, эффективно заменяя сталь во многих изделиях и конструкциях. Из них изготавливают оборудование прокатных станов, кузнечно-прессовое оборудование, в турбостроении, дизеле-, тракторо- и автомобилестроении – коленчатые валы, поршни и многие другие ответственные детали, работающие при высоких циклических нагрузках и в условиях изнашивания.

Ковкими называют чугуны, в которых графит имеет хлопьевидную форму (рисунок 3.3, в). Их получают отжигом белых доэвтектических чугунов. Такой графит, в отличие от пластинчатого, меньше снижает механические свойства металлической основы, вследствие чего ковкий чугун по сравнению с серым обладает высокой прочностью и пластичностью.

Отливки из белого чугуна, подвергаемые отжигу на ковкий чугун, изготавливают тонкостенными (не более 50 мм), иначе в сердцевине при кристаллизации выделяется пластинчатый графит, чугун становится непригодным для отжига. По этой же причине исходные белые чугуны имеют пониженное содержание углерода и кремния. Их состав: 2,4…,9 % С; 1,0…1,6 % Si; 0,2…1,0 % Mn; до 0,2 % S и до 0,18 % P.

По структуре металлической основы, которая определяется режимом отжига, ковкие чугуны бывают ферритными и перлитными. Отжиг на ферритные чугуны проводят в защитной среде по режиму 1 (рисунок 3.4), состоящего из медленного (20…25 ч) нагрева до 950…1000 °С (чуть ниже эвтектической температуры), выдержке при этой температуре 10…15 ч для графитизации эвтектического и избыточного вторичного цементита, медленного охлаждения до 720…740 °С (ниже температуры эвтектоидного превращения) для распада выделяющегося вторичного цементита и выдержке при этой температуре 25…30 ч для графитизации цементита перлита.

Перлитный ковкий чугун получают отжигом в окислительной среде по режиму 2 (рисунок 3.4). В этом случае увеличивают продолжительность первой стадии графитизации, после которой отливки непрерывно охлаждают до 20 °С.

 

 

Рисунок 3. 4. Схема отжига белого чугуна на ковкий

 

Принцип маркировки ковких чугунов такой же, как и для высокопрочных, например, КЧ 37 – 12.

Из ковких чугунов изготовляют детали высокой прочности, работающие в тяжелых условиях износа, способные воспринимать ударные и знакопеременные нагрузки. Большая плотность отливок ковкого чугуна позволяет изготовлять детали водо- и газопроводных установок; хорошие литейные свойства исходного белого чугуна – отливки сложной формы.

Сравнительно новым конструкционным материалом является чугун с вермикулярным графитом (ЧВГ), обладающий высоким временным сопротивлением (300…400 МПа), относительным удлинением 0,9…3,0 % и сравнительно небольшой твердостью (HB 130…290). Этот чугун обладает более высокими служебными свойствами по сравнению с серым чугуном. По своим физико-механическим свойствам чугун с вермикулярным графитом близок к высокопрочному чугуну с ферритной металлической основой. Чугун с вермикулярным графитом обозначают ЧВГ30, ЧВГ35, ЧВГ40, ЧВГ45. Буквы в обозначении показывают принадлежность к чугунам с вермикулярным графитом, цифры – временное сопротивление.

В чугуне с вермикулярным графитом графит имеет червеобразную извилистую форму с равномерным его расположением и стабильными размерами графитовых включений по сравнению с серым чугуном. В металлической основе содержится в основном феррит.

Для получения чугуна с вермикулярным графитом с оптимальными механическими, эксплуатационными и технологическими свойствами необходим следующий химический состав: 3,3…3,8 % C; 2,4…2,6 %Si; 0,6…0,8 % Mn; 0,015 % S; 0,02…0,06 % P; и 0,10…0,15 % РЗМ (редкоземельные металлы).

Чугун для получения вермикулярного графита плавят в электропечах и реже в вагранках. В качестве шихтовых материалов используют передельный чугун, возврат собственного производства, ферросилиций и лигатуры, содержащие РЗМ.

Из чугуна с вермикулярным графитом изготавливают опорные детали головок цилиндров, тормозные рычаги, бандажные кольца шестерен грузовиков, несущие кронштейны, соединительные фланцы, тормозные колодки и др.

Некоторые аналоги зарубежных чугунов представлены в таблице 3.3.

Таблица 3.3

Аналоги зарубежных чугунов

Страны СНГ (ГОСТ) Германия (DIN) США (стандарты) Япония (JIS)
СЧ15 GG-15 25В FC150
КЧ37–12 GTS-34   -
ВЧ 50-7 GGG-50 70-50-05 FCD500

Контрольные вопросы:

1. Как получают белый чугун?

2. Как получают ковкий, серый, высокопрочный чугуны?

3. Какие марки серых чугунов Вы знаете и где они применяются?

4. Какие марки ковких чугунов Вы знаете и где они применяются?

5. Какие марки высокопрочных чугунов Вы знаете и где они применяются?

6. Какие марки антифрикционных чугунов Вы знаете и где они применяются?

7. Какие марки жаростойких чугунов Вы знаете и где они применяются?

8. Как отличить доэвтектические, эвтектические и заэвтектические чугуны?

 

Сплавы на основе меди.

Медь – цветной металл розового цвета, обладающий высокой тепло- и электропроводностью. Медь хорошо обрабатывается давлением в холодном и горячем состоянии.

В зависимости от содержания примесей различают следующие марки меди: М00 (99,99 % Cu), М0 (99,95 % Cu), М1 (99,9 % Cu), М2 (99,7 % Cu), М3 (99,5 % Cu), М4 (99,0 % Cu).

Механические свойства чистой отожженной меди: sв = 220…240 МПа, d = 45-50 %, НВ = 400…500 МПа.

Чистую медь применяют для электротехнических целей в виде проволоки, прутков, лент, листов, полос и труб. Из-за малой прочности чистую медь не используют в качестве конструкционного материала, а применяют ее сплавы.

Различают три группы медных сплавов - латуни, бронзы и сплавы меди с никелем.

Латунями называются двойные или многокомпонентные сплавы на основе меди, в которых основным легирующим элементом является цинк. При введении других элементов кроме цинка латуни называют специальными по наименованию элементов, например, железо-марганцевая латунь и т. д.

По сравнению с медью латуни обладают большей прочностью, коррозионной стойкостью и лучшей обрабатываемостью резанием, литьем, давлением.

Латуни содержат до 45 % Zn. Содержание других легирующих элементов не превышает 9 %.

Маркировка деформируемых (обрабатываемых давлением) латунейсостоит из буквы Л (латунь), буквенных обозначений легирующих элементов и цифр. Например, ЛМцС58-3-2, где 58 % меди, 3 % - марганца и 2 %– свинца.

 

 

Деформируемые латуни (ГОСТ 15527) выпускают в виде простых латуней, например, Л90 (томпак), Л80 (полутомпак), и сложных латуней, например, ЛАЖ60-1-1, ЛС63-3 и др.

Литейные латуни обозначают двумя первыми буквами ЛЦ, после которых следует содержание цинка в процентах, например, ЛЦ16К4. В ряде случаев литейные латуни могут маркироваться как и деформируемые латуни, но в конце ставится буква Л, например, ЛС59-1Л.

Латуни широко применяются в общем и химическом машиностроении.

 

Сплавы меди с оловом, алюминием, марганцем, свинцом, бериллием называют бронзами. Бронзы обладают высокой коррозионной стойкостью, хорошими литейными и антифрикционными свойствами, высокой обрабатываемостью резанием.

По сравнению с латунями бронзы имеют повышенную механическую прочность, например, бериллиевая бронза имеет sв = 900…1000 МПа, d = 2…4 %, НВ = 700…800 МПа.

Бронзы маркируют буквами Бр, далее указывают содержание легирующих элементов, например, БрОЦ4-3 – содержит 4% олова и 3 % цинка.

Различают деформируемые и литейные бронзы. Для литейных бронз в конце маркировки указывается буква Л.

Марганец в бронзах способствует повышению коррозионной стойкости, никель – пластичности, цинк – литейных свойств, свинец улучшает обрабатываемость резанием и антифрикционные свойства.

Алюминиевые бронзы упрочняются термической обработкой, состоящей из закалки и старения, до НВ = 4000 МПа.

Некоторые аналоги зарубежных медных сплавов представлены в таблице 3.4.

 

Таблица 3.4







Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.