Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Механизмы стереозрения. Восприятие удалённости и глубины. Восприятие пространства, времени, движения.





 

Из учебника А.Н. Гусева

Зрительное восприятие пространства: субъектные признаки удаленности и глубины

Окуломоторные признаки

Около 300 лет назад известный английский философ, аббат Дж.Беркли писал о роли двигательного опыта человека (в том числе движений глаз) в зрительном восприятии пространства.

Исследованиями психологов и физиологов установлена роль движений глаз в восприятии удаленности объекта от наблюдателя и восприятии глубины. Их логика ясна и понятна: если движении глаз сопровождают наше восприятие, то не могут ли они как-то кодировать расстояние до объекта, т.е. быть признаками удаленности.

Аккомодация. Фокусировка оптической системы глаза на объект осуществляется посредством изменения кривизны хрусталика или аккомодации (рис. 66). Чем ближе расстояние до объекта, тем сильнее сокращается цилиарная мышца, пропорционально изменяя кривизну хрусталика. На расстоянии около 2—3 м и более эта мышца максимально расслаблена, на расстоянии 0,1—0,2 м — она максимально сокращена. Таким образом, в процессе фокусировки на объекте фиксации взора степень сокращения цилиарной мышцы может кодировать абсолютную удаленность данного объекта в пределах от 0,1 до 3 м. Как подчеркивает Дж.Хохберг, данный механизм не очень точный и не очень быстрый [166].

Конвергенция. В процессе восприятия происходят содружественные движения глаз, связанные с бинокулярной фиксацией взора на каком-либо объекте. Это так называемые вергентные движения глаз.

Процесс сведения оптических осей, сопровождающийся поворотом глазного яблока, называется конвергенцией, а разведение оптических осей — дивергенцией. Чем ближе объект фиксации, тем сильнее поворот глазного яблока внутрь (и сильнее напряжение внутренних прямых мышц глаз) и тем больше по величине угол конвергенции (рис. 67).



Подобный принцип оценки абсолютной удаленности объекта, пришедший из геодезии, называется триангуляцией. Он предполагает, что по степени сокращения мышц человек может оценивать угол конвергенции и, зная расстояние между глазами (он привык в этому расстоянию), может «рассчитать» расстояние до объекта, делая то, что в геометрии называют решением прямоугольного треугольника (рис. 68). А именно: по известной величине одного катета треугольника и двум его углам вычисляется второй катет.

Как показывают современные исследования, аккомодация и конвергенция не являются «сильными» зрительными признаками, т.е. не способны точно кодировать информацию об абсолютной и относительной удаленности воспринимаемых объектов. Тем не менее имеющиеся экспериментальные данные не вполне соответствуют друг другу и носят противоречивый характер. Это связано прежде всего с методической сложностью подобных исследований, поскольку при экспериментальном изучении влияния какого-либо одного зрительного признака очень сложно исключить влияние других.

Бинокулярный параллакс или бинокулярная диспаратность. При бинокулярном зрении всегда присутствует надежный зрительный признак (оптический по своей природе) относительной удаленности двух объектов — бинокулярный параллакс или диспаратность. Дело в том, что, в силу пространственной разнесенности наших глаз, монокулярные поля зрения значительно перекрываются, но проекции объектов, попавших в эту зону перекрытия, не являются идентичными. Когда мы конвергируем глаза на одном объекте (точке бификсации), то его проекции попадают на парные или корреспондирующие точки сетчаток (рис. 69). Однако все точки, расположенные дальше или ближе точки фиксации (на рис. 69 это точка Р), попадают на некорреспондирующие точки сетчатки, что является отражением диспаратности, т.е. факта попадания их проекций на непарные точки сетчаток. Диспаратность3 (D) измеряется разностью углов конвергенции на ближней и дальней точках, т.е. соответствует изменению угла конвергенции при переходе от точки бификсации (P) к другой точке (Q). Положительные значения диспаратности соответствуют тем случаям, когда точка фиксации расположена ближе к наблюдателю, отрицательные — когда дальше. Величина диспаратности пропорциональна величине отношения d/L2, т.е. она растет при увеличении относительной удаленности и резко падает при увеличении абсолютной удаленности (см. рис. 69).

 

 

Знакомый размер

Наши оценки абсолютной и относительной удаленности объектов непосредственно зависят от имеющихся у нас представлений о размерах этих объектов. Это базируется на простом допущении того, что если человек хорошо знаком с размерами какого-либо предмета, то, видя его на расстоянии, ему несложно сделать заключение о его реальных размерах, основываясь на своих воспоминаниях и соотнося их с угловыми размерами проксимального стимула (т.е. величиной сетчаточной проекции). Идея эта не новая, она высказывалась и Дж.Беркли, и Г.Гельмгольцем. В какой степени данная информация реально используется при построении пространственного зрительного образа — это вопрос конкретных экспериментальных исследований. Их общая схема такова: создается искусственная стимульная ситуация, при которой по возможности редуцируются все другие зрительные признаки удаленности и глубины, кроме знания испытуемого о размерах некоторого предмета. Результаты подобных опытов показывают, что знакомый размер как существенный признак работает лишь в обедненной сенсорной среде, т.е. при редукции или отсутствии других зрительных признаков [206]. В качестве примера приведем интересные результаты известных опытов американских психологов В.Иттельсона с игральными картами и В.Эп-

штейна с монетами [93].









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.