Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Тепловые эффекты физико-химических процессов





Раздел химической термодинамики, изучающий тепловые явления, сопровождающие различные физико-химические процессы, например тепловые эффекты химических реакций, фазовых переходов, процессов растворения, называется термохимией.

Внутренняя энергия

При анализе работы тепловой машины Джеймс Джоуль (Joule), Герман Гельмгольц (Helmholtz) и др. установили, что теплота, подводимая к системе из окружающей среды, расходуется на совершение механической работы и на изменение некоторого свойства системы, которое получило название внутренней энергии.

Внутренняя энергия (U) – сумма всех видов энергии, которыми обладают отдельные частицы системы, за исключением кинетической и потенциальной энергии системы в целом и энергии, связанной с внешним электромагнитным и гравитационным полем.

Для систем, рассматриваемых в химической термодинамике, такими видами энергии могут быть кинетическая и потенциальная энергия атомов и молекул, энергия электронов в атомах, внутриядерная энергия и другие виды энергии. На сегодняшний день неизвестны и вряд ли когда-либо будут известны все виды энергии, заключенные в веществе, поскольку материя бесконечна и бесконечны формы ее движения. Но это не создает никаких проблем для практического использования понятия «внутренняя энергия».

При термодинамических расчетах определяющим является, не абсолютное значение величины внутренней энергии в начальном (U н) и конечном (U к) состояниях, а ее изменение (D U = U кU н), которое можно определять, приняв за точку отсчета любое состояние термодинамической системы – так называемое стандартное состояние.

В химических процессах изменяются только две составляющие внутренней энергии:

1) химическая – энергия химических связей, включая энергию межмолекулярного взаимодействия. Изменение химической энергии происходит при протекании химической реакции в результате разрыва и образования химических связей в молекулах исходных веществ и продуктов реакции;

2) тепловая – кинетическая энергия движения атомов и молекул. Изменение тепловой энергии определяется изменением температуры системы как параметра кинетической энергии атомов и молекул.

Внутренняя энергия является функцией состояния системы. Её изменение в каком-либо процессе зависит только от начального и конечного состояний и не зависит от пути перехода.

Независимость изменения какого-нибудь свойства системы (X) от пути протекания процесса означает, что бесконечно малое приращение является полным дифференциалом (dX). Тогда элементарное количество внутренней энергии (бесконечно малое изменение) является полным дифференциалом (dU): . Если система совершает круговой процесс, то полное изменение внутренней энергии равно нулю: .

Аналогичным свойством обладают и все остальные функции состояния. Величина D U (dU) считается положительной, если внутренняя энергия системы в ходе процесса увеличивается, и, соответственно, отрицательной, если уменьшается. Теплота (Q) и работа (W) в общем случае не являются функциями состояния, поскольку их изменение при переходе системы из одного состояния равновесия в другое зависит от пути протекания процесса. Соответственно элементарное количество (бесконечно малые изменения) теплоты (d Q) и работы (d W) в общем случае не являются полными дифференциалами.

Единицей измерения внутренней энергии является джоуль [Дж], [кДж]. Внутренняя энергия термодинамической системы зависит от природы вещества, его количества (экстенсивная величина) и параметров состояния системы. Поэтому часто ее относят к одному молю (или килограмму) вещества, измеряя в [кДж/моль], [кДж/кг]. В литературе может встречаться внесистемная единица тепловой энергии – калория (кал): 1 кал = 4,1868 Дж.

Величину внутренней энергии системы, находящейся в состоянии равновесия, характеризует температура, поскольку она является параметром средней кинетической энергии молекул и атомов. Более высокой температурой обладают тела, у которых средняя кинетическая энергия молекул выше. Для идеального газа внутренняя энергия 1 моля газа зависит только от температуры.

Температура системы измеряется термометрами, действие которых основано на зависимости какого-либо физического свойства тела (объем, электрическое сопротивление и т.п.) от температуры с учетом принципа транзитивности теплового равновесия: если каждая из систем А и В находится в тепловом равновесии с системой С, то справедливо утверждение о тепловом равновесии А и В друг с другом. Все системы, находящиеся в тепловом равновесии друг с другом, будут обладать общим свойством – их температура будет одной и той же.

В термодинамике пользуются термодинамической шкалой температур. Абсолютная температура тела Т (температура по термодинамической шкале) всегда положительна. В системе СИ единицей измерения температуры является градус Кельвина (К).

Первое начало термодинамики

Джеймс Джоуль в середине XIX века экспериментально обосновал закон сохранения энергии и определил механический эквивалент теплоты. На основании его работ этот закон был сформулирован в удобной для термодинамики форме и получил название "первое начало термодинамики": теплота ( D Q), сообщенная термодинамической системе, идет на увеличение внутренней энергии ( D U) системы и на совершение системой работы ( D W).

Математическим выражением первого начала термодинамики является уравнение D Q =D U + D W. Для бесконечно малых изменений величин соответственно d Q = dU + d W.

Часто при протекании термодинамических процессов единственной работой системы является работа расширения, т.е. работа против внешнего давления (р): D W = р ×D V. Тогда D Q =D U + р ×D V, d Q = dU + р × dV.

Рассмотрим применение первого начала термодинамики к процессам, протекающим при постоянстве одного из параметров.

Изотермический процесс (Т =const). Энергия, подведенная к системе в виде теплоты, идет только на работу расширения системы: d QT = p×dV,D QT = p ×D V.

Изохорный процесс (V =const, тогда D V =0). Система работы не совершает, поэтому все подведенное к системе тепло идет на увеличение ее внутренней энергии: d QV = dU,D QV =D U. Поскольку в данном случае D QV >0, так как система поглощает теплоту из окружающей среды, то и D U >0.

Изобарный процесс (p =const). Энергия, подведенная к системе в виде теплоты, идет на приращение внутренней энергии (D U >0) и на работу расширения системы (p ×D V): d Qр = dU + p × dV,D Qр =D U + p ×D V,

d Qp = dU + p × dV = dU+ d(p × V) = d(U+ p × V).

Отметим, что в изотермичеческом, изохорном и изобарном процессах бесконечно малые изменения теплоты приобретают свойство полного дифференциала, т.е. теплота приобретает свойства функции состояния: U+ p × V может быть заменено функцией Н, H = U+ p × V, тогда, очевидно, dQp = dH.

Эта термодинамическая функция (H = U+ p × V) называется энтальпией (от греч. enthalpo — нагреваю). Она является функцией состояния системы и измеряется, как и внутренняя энергия, в джоулях [Дж], [кДж]. Она также зависит от количества вещества (экстенсивная величина), поэтому ее относят к одному молю (или килограмму) вещества [кДж/моль], [кДж/кг].

Физический смысл энтальпии явствует из ее определения (H = U+ p × V). Если взять какую-то систему, которая занимает объем V и находится под давлением p, то полная энергия этой системы будет суммой двух энергий: внутренней U и энергии, связанной с взаимодействием системы со средой (с энергией «стенки», отделяющей систему от окружающей среды), которая и обеспечивает давление p. Эта энергия будет пропорциональна p и будет тем больше, чем больше объем системы, т.е. пропорциональна V. Всю энергию системы можно, в принципе, превратить в тепло. Таким образом, система как бы содержит в себе определенное количество энергии, которую можно переводить в тепло. Таким образом, энтальпия есть теплосодержание системы.

Энтальпию удобно использовать при рассмотрении энергетических эффектов в изобарных процессах. Поскольку изменение энтальпии характеризует количество теплоты, отданное или полученное системой, то оно соответствует тепловому эффекту реакции, протекающей при постоянном давлении.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.