Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Таким образом, дебит в увеличивается в 2 - 3 раза.





При другой схематизации течения жидкости к скважине предполагается что от контура питания Rк до радиуса r = rт жидкость движется по пласту, имеющему гидропроводность,

а от радиуса r = rт до стенки скважины r = rc по трещине с гидропроводностью:

Здесь k2 - проницаемость трещины и w - ширина трещины (раскрытость). При такой схематизации приток может быть выражен через сумму фильтрацнонных сопротивлении этих двух областей, а именно:

Деля на дебит несовершенной скважины, имеющей приведенный радиус rпр,

получим после некоторых сокращений:

Деля числитель и знаменатель на 1/k1h1, получим

При rпр = rс, т. е. при гидродинамически совершенной скважине, оценки значений по этой формуле будут меньше, чем в предыдущем случае. Практически значения φ часто бывают намного больше.

Если пласт сложен из нескольких самостоятельных пропластков, эффективность ГРП в таком пласте будет значительно меньше, так как образование трещины в одном пропластке может существенно изменить приток жидкости только из этого пропластка, но не суммарный приток из всех пропластков. Приток жидкости из нескольких пропластков можно записать как сумму

Если в результате ГРП в одном (скажем, в первом) пропластке произошло увеличение дебита в 4 раза, (j = 4), то новый дебит скважины будет равен

Кратность увеличения дебита скважины после гидроразрыва слоистого пласта составит

Прибавляя и отнимая в числителе q1 получим после упрощений и деления.

Поскольку приток из одного пропластка q1 мал по сравнению с притоком всех пропластков Sq i, то общее увеличение дебита такой слоистой системы j i будет также мало.

В таком случае надлежащий эффект в многослойном пласте или в пласте со слоистой неоднородностью по разрезу может быть достигнут двумя методами:

1. Либо созданием одной вертикальной трещины, рассекающей все прослои, за одну операцию ГРП.

2. Либо созданием горизонтальных трещин в каждом пропластке при поинтервальном или многократном ГРП.

Многократный разрыв - это осуществление нескольких разрывов в пласте за одну операцию. После регистрации разрыва какого-то прослоя и введения в него нужного количества наполнителя в нагнетаемый поток жидкости вводятся упругие пластмассовые шарики, плотность которых примерно равна плотности жидкости. Потоком жидкости шарики увлекаются и закрывают те перфорационные отверстия, через которые расход жидкости наибольший. Диаметр этих шариков примерно 12 - 18 мм, один шарик может перекрывать одно перфорационное отверстие. Этим достигается уменьшение или даже прекращение потока жидкости в образовавшуюся трещину. Давление на забое возрастает и это вызывает образование новой трещины в другом прослое, что регистрируется на поверхности изменением коэффициентов поглотительной способности скважины.

После этого в поток снова вводятся шарики без снижения давления через специальное лубрикаторное устройство, устанавливаемое на устье скважины для закупорки второй образовавшейся трещины.

Разработаны и иные технологические приемы многократного ГРП с использованием закупоривающих шаров, а также с помощью временно закупоривающих мелкодисперсных веществ (нафталин), которые растворяются в нефти при последующей эксплуатации скважины. При последующем дренировании скважины закачанные шарики вымываются на поверхность и открывают все образовавшиеся трещины.

Поинтервальный разрыв - это ГРП в каждом прослое, при котором намеченный интервал изолируется сверху и снизу двумя пакерами и подвергается обработке. После окончания операции ГРП пакеры освобождаются и устанавливаются в пределах второго интервала, который обрабатывается как самостоятельный. Поинтервальный разрыв возможен в случаях, когда общим фильтром разрабатываются несколько пластов или пропластков, изолированных друг от друга слоями непроницаемых пород, имеющих толщину несколько десятков метров, с хорошим перекрытием - цементным камнем заколонного пространства. Это необходимо для размещения пакеров и якорей выше и ниже намеченного для ГРП интервала, а также для предотвращения ухода жидкости в пласты, не предназначенные для обработки во время данной операции.

Занятие 13. Типы проппантов

Цель:

Знать виды и назначение проппантов.

Задание: Изучить технологию применения проппантов.

Наполнитель служит для заполнения трещин и предупреждения их смыкания при снятии давления. Известны факты эффективного ГРП без наполнителя. Однако эффект менее продолжителен. Наполнитель при заполнении трещины воспринимает нагрузку от горного давления после снижения давления жидкости. Он частично разрушается и вдавливается в породу и должен обладать высокой прочностью. В идеале наполнитель должен иметь плотность, равную плотности жидкости-песконосителя, чтобы перенос его по трещине и ее заполнение были бы успешными. Размеры зерен наполнителя должны обеспечить его проникновение в самые удаленные части трещины и высокую их проницаемость при последующей эксплуатации скважин. Для ГРП применяют песок размером от 0,5 до 1,2мм. В первые порции жидкости-песконосителя замешивается более мелкая фракция (0,5 - 0,8 мм), а в последующую - более крупные фракции.

Чистый кварцевый песок имеет большую плотность (2650 кг/м3), что способствует его оседанию из потока жидкости и затрудняет заполнение трещин. Его плотность на смятие бывает недостаточной. В мировой практике в последнее время находят применение в качестве наполнителя стеклянные шарики, а также зерна агломерированного боксита соответствующего размера и молотая скорлупа грецкого ореха. Плотность стеклянных шариков примерно равна плотности кварца, т. е. 2650 кг/м3, но они прочнее и меньше вдавливаются в породу. Плотность порошка агломерированного боксита 1400 кг/м3 Производятся промышленные испытания наполнителя из особо прочных искусственных синтетических полимерных веществ, имеющих плотность, близкую к плотности жидкости (1100 кг/м3) песконосителя.

После разрыва под воздействием давления жидкости трещина увеличивается, возникает ее связь с системой естественных трещин, не вскрытых скважиной, и с зонами повышенной проницаемости; таким образом, расширяется область пласта, дренируемая скважиной. В образованные трещины жидкостями разрыва транспортируется зернистый материал (проппант), закрепляющий трещины в раскрытом состоянии после снятия избыточного давления. Правильный выбор проппанта это важнейший этап в проведении операции ГРП.

При гидравлическом разрыве проппанты вследствие высокого давления смыкания трещин подвержены разрушению с образованием мелочи, которая перемещается и закупоривает каналы в расклиненной трещине, поэтому для гидроразрыва наиболее перспективны высокопрочные керамические проппанты, обладающие оптимальным соотношением цены и качества.

Пропант (или проппант, от англ. propping agent - «расклинивающий агент») - гранулообразный материал, который используется в нефтедобывающей промышленности для повышения эффективности отдачи скважин с применением технологии гидроразрыва пласта (ГРП). Служит для сохранения проницаемости трещин, получаемых в ходе ГРП. Представляет собой гранулы сходного размера, с типичным диаметром от 0,5 до 1,2 мм.

Первым материалом, который использовался для удержания трещины в раскрытом состоянии, был кремнистым песок.

Позже, были созданы искусственные проппанты, пригодные для использования там, где естественные пески непригодны.

Существует два типа керамических проппантов: агломерированный боксит и проппанты промежуточной прочности. Проницаемость последних близка к проницаемости агломерированного боксита, плотность же их ниже, чем у боксита, но чуть выше, чем у песка.

Агломерированный боксит – это высокопрочный проппант, разработанный компанией "Экссон продакшн рисерч". Изготавливают его из высококачественных импортных бокситовых руд. Процесс изготовления включает измельчение руды на очень мелкие частицы, преобразование первичной руды в сферические частицы нужного размера и обжиг их в печи при достаточно высокой температуре, вызывающей процесс агломерации. Конечный продукт обычно содержит 85% Al2O3. Остальные 15% составляют оксиды железа, титана и кремния. Удельная плотность его 3,65 по сравнению с плотностью песка 2,65. Применяются агломерированные бокситы в основном в глубоких (глубже 3500 м) скважинах.

Эти проппанты изготавливаются так же, как и другие керамики. Главное их отличие - состав. Они содержат 49% Al2O3, 45% SiO2, 2% TiO2 и следы других оксидов. Плотность этих проппантов равна 2,72, то есть они наиболее распространенные проппанты благодоря их цене, прочности плотности, близкой к плотности песка.

Производятся и используются также синтетические смолопокрытые проппанты. Виды проппантов представлены на рисунке 1.

· С уменьшением предельных размеров частиц материала увеличивается нагрузка, которой он может противостоять, что способствует устойчивости проницаемости заполненной проппантом трещины.

· При нулевом напряжении смыкания проницаемость керамического проппанта 20/40. Одна из причин этого - более однародная, по сравнению с песком, сферичность керамических частиц.

· Значительное содержание мелких частиц (пыли) в песке может существенно понизить проницаемость трещины разрыва. Например, если через сито 40 проходит 20% частиц проппанта 20/40, проницаемость снизится в 5 раз.

· Проницаемость песка 10/16 примерно на 50% выше проницаемости песка 10 - 20.

При увеличении напряжения смыкания трещины или горизонтального напряжения в скелете породы пласта происходит существенное снижение проницаемости проппантов. При напряжении смыкания 60 Мпа проницаемость проппанта 20/40 "CarboProp" значительно выше, чем у обычного песка. При напряжении смыкания примерно 32 Мпа кривые размеров частиц для всех обычных песков быстро падают. Прочность песчаных зерен колеблется в зависимости от места происхождения песка и предельных размеров частиц.

Прочность является основным критерием при подборе проппантов для конкретных пластовых условий с целью обеспечения длительной проводимости трещины на глубине залегания пласта. В глубоких скважинах минимальное напряжение - горизонтальное, поэтому образуются преимущественно вертикальные трещины. С глубиной минимальное горизонтальное напряжение возрастает приблизительно на 19 МПа/км. Поэтому по глубине проппанты имеют следующие области применения: кварцевые пески - до 2500 м; проппанты средней прочности - до 3500 м; проппанты высокой прочности - свыше 3500 м.

Исследования последних лет, проведенные в США, показали, что применение проппантов средней прочности экономически эффективно и на глубинах менее 2500 м, так как повышенные затраты за счет их более высокой по сравнению с кварцевым песком стоимости перекрываются выигрышем в дополнительной добыче нефти за счет создания в трещине гидроразрыва упаковки проппанта более высокой проводимости.

Все применяемые проппанты должны быть, по возможности, химически инертны. Они должны противостоять агрессивным жидкостям и высоким температутам.

От округлости и сферичности гранул проппанта зависит плотность его упаковки в трещине, ее фильтрационное сопротивление, а также степень разрушения гранул под действием горного давления. Сферичность показывает, насколько форма гранулы близка к форме идеальной сферы. Сферичность и окатанность по Крумбейну, представлена на рисунке 2.

Плотность проппанта определяет перенос и расположение его вдоль трещины. Проппанты высокой плотности труднее поддерживать во взвешенном состоянии в жидкости разрыва при их транспортировании вдоль трещины. Заполнение трещины проппантом высокой плотности может быть достигнуто двумя путями - использованием высоковязких жидкостей, которые транспортируют проппант по длине трещины с минимальным его осаждением, либо применением маловязких жидкостей при повышенном темпе их закачки. В последние годы зарубежные фирмы стали выпускать облегченные проппанты, характеризующиеся пониженной плотностью.

Наиболее дешевым проппантом является песок. Высокопрочные проппанты, например, агломерированный боксит или песок со смолистым покрытием, гораздо дороже. Оценку их применимости следует делать на основании индивидуального экономического анализа по данной скважине.

В процессе эксплуатации восстановленных гидроразрывом с использованием проппантов скважин весьма вероятен их вынос из скважин вместе с нефтью. Для предотвращения такого нежелательного явления проппанты покрывают полимерной смолой, которая после проведения гидроразрыва полимеризуются, и проппанты, слипаясь, создают монолитный каркас с сохранением около 40% по объему сквозных каналов, сквозь которые нефть поступает в скважину и выдавливается на поверхность без захвата проппантов.

В зависимости от глубины скважины температура пласта может колебаться от 30 до 150°С, поэтому для получения слипающихся покрытий используют различные виды полимерных материалов.

Известен способ получения проппантов, включающий формирование двухслойного полимерного покрытия на керамических гранулах, нагретых до 150-250°С:

· При перемешивании добавляют фенолформальдегидную смолу с гексаметилентетрамином.

· До полимеризации смолы добавляют при перемешивании пылевидный напонитель (кварцевую муку, тальк или полимерный порошок).

· Перемешивают материал до полной полимеризации слоя.

· Вновь добавляют фенолформальдегидную смолу с последующим ее оплавлением, а затем вливают водный раствор гексаметилентетрамина для быстрого охлаждения и неполной полимеризации внешнего покрытия.

Таким образом, получают частично отвержденное покрытие, которое может дополимеризовываться в скважине.

Покрытие наносится как на белые, так и на бурые пески. Покрытия бывают отверждаемыми и вулканизированными.

Покрытие проппантов не изменяют способность отдельных гранул к сопротивлению разрушению, однако может помочь более равномерно распределить нагрузку. Часто оболочка оказывается способной удержать разрушенные частицы вместе.

Наиболее часто применяют проппанты с размерами гранул 0,425...0,85 мм (20/40 меш), реже 0,85... 1,7 мм (12/20 меш), 0,85...1,18 мм (16/20 меш), 0,212...0,425 мм (40/70 меш). Выбор нужного размера зерен проппанта определяется целым комплексом факторов. Чем крупнее гранулы, тем большей проницаемостью обладает упаковка проппанта в трещине. Однако использование проппанта крупной фракции сопряжено с дополнительными проблемами при его переносе вдоль трещины. Прочность проппанта снижается с увеличением размеров гранул. Кроме того, в слабосцементированных коллекторах предпочтительным оказывается использование проппанта более мелкой фракции, так как за счет выноса из пласта мелкодисперсных частиц упаковка крупнозернистого проппанта постепенно засоряется и ее проницаемость снижается.

Опыт проведения работ гидро – разрыва пласта с использованием пропанта.

Наиболее крупные работы по проведению массированных ГРП были предприняты в Германии в газоносных пластах, расположенных на глубине 3000...6000 м при температуре 120...180 °С. В основном здесь использовались средне- и высокопрочные искусственныепроппанты. В период 1976-1985 гг. в Германии было проведено несколько десятков массированных ГРП. Расход проппанта при этом составлял в большинстве случаев порядка 100 т/скв., в трети случаев - 200 т/скв., а при проведении наиболее крупных операций доходил до 400...650 т/скв. Длина трещин варьировалась от 100 до 550 м, высота от 10 до 115 м. В большинстве случаев операции оказались успешными и привели к увеличению дебита в 3...10 раз. Неудачи при проведении отдельных ГРП были связаны в основном с высоким содержанием воды в пласте.

Газовые месторождения Великобритании в Северном море обеспечивают около 90 % потребности страны в газе и сохранят доминирующую роль в газоснабжении до конца века. Расход проппанта при ГРП в газоносных песчаниках, расположенных на глубинах 2700 - 3000 м, составлял 100... 250 т/скв.

До недавнего времени в качестве проппанта в России использовался только натуральный песок в количестве до 130 т/скв„ а в большинстве случаев закачивалось 20...50 т/скв. В связи с относительно небольшой глубиной залегания обрабатываемых пластов не было необходимости в применении синтетических высококачественных проппантов. До конца 80-х годов при проведении ГРП использовалось в основном отечественное или румынское оборудование, в некоторых случаях - американское.

Ежегодное потребление проппантов оценивалось в 2.2—2.4 миллиона тонн по состоянию на 2006 год. Наибольшую долю, около 2 млн тонн, составляли кварцевые пески, со стоимостью порядка 70 долларов США за тонну. Покрытый полимерами песок составлял около 180 тысяч тонн, со стоимостью около 350 долларов за тонну. Несмотря на высокую стоимость, составляющую 650—750 долларов за тонну, керамические искусственные проппанты производятся в объеме 200 тысяч тонн ежегодно.

Основные производители синтетических керамических проппантов расположены в США (Carbo-Ceramics, Norton Alcoa) и Бразилии (Sintex).

Ведущие российские производители проппантов на 2010 год по данным Инфомайн: «Боровичский комбинат огнеупоров» (Новгородская обл.), «Форэс» (Свердловская обл.), «Трехгорный керамический завод» (Челябинская обл.), «Карбо Керамикс (Евразия)» (Челябинская обл.), «Южноуральский завод строительной керамики» (Челябинская обл.), «Уралхимпласт» (Свердловская обл.), «Резион» (Ленинградская обл.), «Юргинские абразивы» (Кемеровская обл.).

Занятие 14. Расчет инженерных показателей при проектировании ГРП

Цель:

Научиться оперировать показателями ГРП и их определению.

Задание: Определить давления разрыва.

Сущность метода заключается в нагнетании в проницаемый пласт жидкости при высоком давлении (до 100 Мпа), под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещин. Для предупреждения смыкания трещин при снятии давления в них вместе с жидкостью закачивается крупный песок (проппант), сохраняющий проницаемость трещин, в тысячи раз превышающую проницаемость ненарушенного пласта. На пласт в вертикальном направлении действует сила, равная весу вышележащих пород. Плотность горных осадочных пород обычно принимается равной 2300 кг/м3. Давление горных пород будет равно За миллионы лет существования осадочных пород внутреннее напряжение породы по всем направлениям стало одинаковым и равным горному. Для расслоения пласта, т. е. для образования в пласте горизонтальной трещины, необходимо внутри пористого пространства создать давление Рр, превышающее горное на величину сопротивления горных пород на разрыв, так как надо преодолеть силы сцепления частиц породы,

Фактические давления разрыва меньше горного, т. к. в ПЗС создаются области разгрузки, в которых внутреннее напряжение меньше горного Рг. Это обусловлено причинами геологического характера, например, в процессе горообразования могло произойти не только сжатие пород, но и их растяжение. Другое объяснение локального уменьшения Pг - сама проводка ствола скважины нарушает распределение напряжении в примыкающих породах, и эти нарушения (уменьшения) тем больше, чем ближе порода к стенкам скважины. Локальное уменьшение внутреннего напряжения больше, если в разрезе имеются слои глин, обладающие свойствами пластичности, которые в процессе бурения набухают и часто выпучиваются в ствол скважины.

Давление разрыва Pp не поддается надежному теоретическому определению, ибо связано с необходимостью знания некоторых параметров пласта, измерение которых недоступно.

При ГРП возникают давления, превышающие допустимые для обсадных колонн, поэтому предварительно в скважину спускают НКТ, способные выдержать это давление.

Приближенные значения для давления разрыва:

для неглубоких скважин (до 1000 м):

для глубоких скважин (H > 1000 м)

где P - гидростатическое давление столба жидкости, высота которого равна глубине залегания пласта.

Сопротивление горных пород на разрыв обычно мало σр = 1,5 - 3 МПа, и не влияет существенно на Pp. Давление разрыва на забое Pр и давление на устье скважины Pу связаны соотношением где Pтр - потери давления на трение в НКТ. Из уравнения следует

Pст - статическое давление, определяется с учетом кривизны скважины

где Н - глубина скважины; β - угол кривизны (усредненный); ρж - плотность жидкости в скважине. Если жидкость содержит наполнитель (песок, стеклянные шарики, порошок из полимеров и др.), то плотность подсчитывается как средневзвешенная м):

где n - число килограммов наполнителя в 1м3 жидкости; ρн - плотность наполнителя (для песка ρн = 2650 кг/м3). Потери на трение определить труднее, так как применяемые жидкости иногда обладают неньютоновскими свойствами. Присутствие в жидкости наполнителя (песка) увеличивает потери на трение. В американской практике используются различные графики зависимости потерь давления на трение на каждые 100 фут НКТ разного диаметра при прокачке различных жидкостей.

При больших темпах закачки, соответствующих турбулентному течению, структурные свойства жидкостей с различными загустителями и химическими реагентами исчезают, и потери на трение можно определить по формулам трубной гидравлики.

где λ - коэффициент трения, определяемый по соответствующим формулам в зависимости от числа Рейнольдса; w - линейная скорость потока в НКТ; d - внутренний диаметр НКТ; ρ - плотность жидкости; Н - длина НКТ; g = 9,81 м/с2; α - поправочный коэффициент, учитывающий наличие в жидкости наполнителя (для чистой жидкости α = 1) и зависящий от его концентрации.

Применяемые жидкости. Применяемые для ГРП жидкости приготавливаются на нефтяной, либо на водной основе.

По своему назначению жидкости разделяются на три категории: жидкость разрыва, жидкость-песконоситель и продавочная жидкость.

Жидкость разрыва должна хорошо проникать в пласт или в трещину, но иметь высокую вязкость, чтобы не рассеиваться в объеме пласта, и вызывать необходимое расклинивающее действие в образовавшейся трещине. В качестве жидкостей разрыва используют сырые дегазированные нефти с вязкостью до 0,3 Па-с; нефти, загущенные мазутными остатками; нефтекислотные эмульсии (гидрофобные); водонефтяные эмульсии (гидрофильные) и кислотно-керосиновые эмульсии.

Жидкости на углеводородной основе применяют при ГРП в добывающих скважинах. В нагнетательных скважинах в качестве жидкости разрыва используют чистую или загущенную воду. К загустителям относятся компоненты, имеющие крахмальную основу, полиакриламид, сульфит-спиртовая барда (ССБ), КМЦ (карбоксилметилцеллюлоза).

Некоторые глинистые компоненты пластов чувствительны к воде и склонны к набуханию. В таких случаях в жидкости на водной основе вводят химические реагенты, стабилизирующие глины при смачивании.

Жидкости-песконосители изотавливают на нефтяной и водной основах. Для них важна пескоудерживающая способность и низкая фильтруемость, за счет увеличения вязкости и придания жидкости структурных свойств. Используются те же жидкости, что и для разрыва пласта.

При высокой фильтруемости перенос песка в трещине ухудшается, так как о скорость течения по трещине быстр становится равной нулю, и развитие ГРП затухает вблизи стенок скважины. Хорошей песконесущей способностью обладают кислотно-керосиновые эмульсии, имеющие высокую стойкость, не разрушающиеся в жаркую погоду при транспортировке с наполнителем.

При закачке песконосительной жидкости, из-за большой вязкости, наличия в ней наполнителя - песка и необходимости вести закачку на большой скорости возникают большие устьевые давления. Хотя насосные агрегаты делаются в износостойком исполнении, при работе на высоких давлениях они быстро изнашиваются. Для снижения потерь на трение на 12 - 15 % разработаны химические добавки к растворам на мыльной основе, а также тяжелые высокомолекулярные углеводородные полимеры. Около 90 % операций ГРП осуществляются с использованием жидкостей на водной основе в силу дешевизны.

Продавочные жидкости закачивают в скважину для того, чтобы довести жидкость-песконоситель до забоя скважины. Объем продавочной жидкости равен объему НКТ. К расчетному объему НКТ прибавляется объем затрубного пространства между башмаком НКТ и верхними дырами фильтра. В качестве продавочной жидкости используется чаще всего вода.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.