Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Интерференция в тонких пленках





26.1. Интерференция света при отражении от тонких пластинок

Путь на плоскопараллельную пластинку толщиной с показателем преломления падает параллельный пучок света под углом и отражается в точке . Одновременно в точке отражается и идет в том же направлении другой луч. Назовем эти лучи 1 и 2. Между отраженными лучами имеется оптическая разность xода:

(1)

Если она не превышает длины когерентности и расстояние АВ между лучами меньше радиуса пространственной когерентности, то при наложении отраженных лучей 1 и 2 должна наблюдаться их интерференция.

Из геометрических соображений следует:

(2)

 

Поэтому оптическая разность хода

(2)

Но по закону отражения света . Поэтому знаменатель

Тогда оптическая разность хода

(3)

Учтем изменение фазы луча 1 при отражении в точке – изменение фазы на эквивалентно увеличению разности хода на :

(4)

Для выполнения условия временной когерентности разность кода не должна превышать длину когерентности, а значит должно выполняться условие:

Выразим толщину пленки и получим условие, которому она должна удовлетворять, чтобы можно было наблюдать интерференцию лучей, отраженных от ее поверхностей:

(5)

в числителе можно пренебречь по сравнению с . Корень в знаменателе имеет величину порядка единицы. Поэтому ориентировочно толщина пленки должна удовлетворять должна удовлетворять соотношению:

Если для наблюдения интерференции использовать солнечный свет, то можно положить, что . Человеческий глаз отличает оттенки цвета, отличающиеся по длине волны на . В этом случае интерференция наблюдаема при толщине пленки . Именно по этой причине мы не наблюдаем интерференции при отражении света от поверхностей обыкновенного стекла.



Лучи 1 и 2 в падающем пучке отстоят на расстояние = АВ. Из геометрических соображений следует, что

При угле падения порядка можно положить

Радиус пространственной когерентности солнечного света определяется угловым размером солнца, который составляет рад. Поэтому

Поэтому, если мы хотим наблюдать интерференцию в солнечном свете при углах падения , необходимы пленки толщиной менее . Пленками такой и меньшей толщины растекаются по поверхности воды минеральные масла, и именно об этом свидетельствует радужная окраска поверхности воды в лужах.

 

 

Полосы равного наклона

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом. Расположим параллельно пластинке собирающую линзу, в ее фокальной плоскости – экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, падающие под углом , дают по 2 отраженных, которые соберутся в точке . Это справедливо для всех лучей, падающих на поверхность пластинки под данным углом, во всех точках пластинки. Линза обеспечивает сведение всех таких лучей в одну точку, поскольку параллельные лучи, падающие на линзу под определенным углом, собираются ею в одной точке фокальной плоскости, т.е. на экране. В точке О птическая ось линзы пересекает экран. В этой точке собираются лучи, идущие параллельно оптической оси.

Лучи, падающие под углом , но не в плоскости рисунка, а в других плоскостях, соберутся в точках, расположенных на таком же расстоянии от точки , как и точка . В результате интерференции этих лучей на некотором расстоянии от точки образуется окружность с определенной интенсивностью падающего света. Лучи, падающие под другим углом, образуют на экране окружность с другой освещенностью, которая зависит от их оптической разности хода. В результате на экране образуются чередующиеся темные и светлые полосы в форме окружностей. Каждая из окружностей образована лучами, падающими под определенным углом, и они называются полосами равного наклона. Локализованы эти полосы в бесконечности.

Роль линзы может исполнять хрусталик, а экрана – сетчатка глаза. При этом глаз должен быть аккомодирован на бесконечность. В белом свете получаются разноцветные полосы.

Полосы равной толщины

Возьмем пластинку в виде клина. Пусть на нее падает параллельный пучок света. Рассмотрим лучи, отразившиеся от верхней и нижней граней пластинки. Если эти лучи свести линзой в точке , то они будут интерферировать. При небольшом угле между гранями пластинки, разность хода лучей можно вычислять по форму ле для плоскопараллельной пластинки. Лучи образовавшиеся от падения луча в некоторую другую точку пластинки соберутся линзой в точке . Разность их хода определится толщиной пластинки в соответствующем месте. Можно доказать, что все точки типа Р лежат в одной плоскости, проходящей через вершину клина.

Если расположить экран так, чтобы он был сопряжен с поверхностью, в которой лежат точки P, Р1 Р2 то на нем возникнет система светлых и темных полос, каждая из которых образована за счет отражений от пластинки в местах определенной толщины. Поэтому в данном случае полосы называются полосами равной толщины.

При наблюдении в белом свете полосы будут окрашенными. Локализованы полосы равной толщины вблизи поверхности пластинки. При нормальном падении света – на поверхности.

В реальных условиях, при наблюдении окрашивания мыльных и масляных пленок наблюдается полосы смешанного типа.









ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.