|
Площадь криволинейной трапеции
Пусть функция неотрицательна и непрерывна на отрезке . Тогда, согласно геометрическому смыслу определенного интеграла, площадь криволинейной трапеции, ограниченной сверху графиком этой функции, снизу – осью , слева и справа – прямыми и (см. рис. 2) вычисляется по формуле . (5) Пример 9. Найти площадь фигуры, ограниченной линией и осью . Решение. Графиком функции является парабола, ветви которой направлены вниз. Построим ее (рис. 3). Чтобы определить пределы интегрирования, найдем точки пересечения линии (параболы) с осью (прямой ). Для этого решаем систему уравнений Получаем: , откуда , ; следовательно, , . Рис. 3 Площадь фигуры находим по формуле (5): (кв. ед.).
Если функция неположительна и непрерывна на отрезке , то площадь криволинейной трапеции, ограниченной снизу графиком данной функции, сверху – осью , слева и справа – прямыми и , вычисляется по формуле . (6) В случае, если функция непрерывна на отрезке и меняет знак в конечном числе точек, то площадь заштрихованной фигуры (рис. 4) равна алгебраической сумме соответствующих определенных интегралов: . (7) Рис. 4 Пример 10. Вычислить площадь фигуры, ограниченной осью и графиком функции при .
Рис. 5 Решение. Сделаем чертеж (рис. 5). Искомая площадь представляет собой сумму площадей и . Найдем каждую из этих площадей. Вначале определим пределы интегрирования, решив систему Получим , . Следовательно: ; . Таким образом, площадь заштрихованной фигуры равна (кв. ед.).
Рис. 6 Пусть, наконец, криволинейная трапеция ограничена сверху и снизу графиками непрерывных на отрезке функций и , . (8) Пример 11. Найти площадь фигуры, ограниченной линиями и . Решение. Данная фигура изображена на рис. 7. Площадь ее вычислим по формуле (8). Решая систему уравнений находим , ; следовательно, , . На отрезке имеем: . Значит, в формуле (8) в качестве возьмем x, а в качестве – . Получим: (кв. ед.). Более сложные задачи на вычисление площадей решают путем разбиения фигуры на непересекающиеся части и вычисления площади всей фигуры как суммы площадей этих частей.
Рис. 7 Пример 12. Найти площадь фигуры, ограниченной линиями , , . Решение. Сделаем чертеж (рис. 8). Данную фигуру можно рассматривать как криволинейную трапецию, ограниченную снизу осью , слева и справа – прямыми и , сверху – графиками функций и . Так как фигура ограничена сверху графиками двух функций, то для вычисления ее площади разобьем данную фигуру прямой на две части (1 – это абсцисса точки пересечения линий и ). Площадь каждой из этих частей находим по формуле (4): (кв. ед.); (кв. ед.). Следовательно: (кв. ед.).
Рис. 8
Рис. 9 В заключение отметим, что если криволинейная трапеция ограничена прямыми и , осью и непрерывной на кривой (рис. 9), то ее площадь находится по формуле .
Объем тела вращения
Пусть криволинейная трапеция, ограниченная графиком непрерывной на отрезке функции , осью , прямыми и , вращается вокруг оси (рис. 10). Тогда объем полученного тела вращения вычисляется по формуле . (9) Пример 13. Вычислить объем тела, полученного вращением вокруг оси криволинейной трапеции, ограниченной гиперболой , прямыми , и осью .
Решение. Сделаем чертеж (рис. 11). Из условия задачи следует, что , . По формуле (9) получаем Рис. 10
Рис. 11 Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d, осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле . (10)
Рис. 12 Пример 14. Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х 2 = 4 у, у = 4, х = 0 (рис. 13). Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем: . Рис. 13 Длина дуги плоской кривой Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).
Рис. 14 Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю. Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле . (11)
Пример 15. Вычислить длину дуги кривой , заключенной между точками, для которых . Решение. Из условия задачи имеем . По формуле (11) получаем: .
4. Несобственные интегралы При введении понятия определённого интеграла предполага-лось, что выполняются следующие два условия: а) пределы интегрирования а и являются конечными; б) подынтегральная функция ограничена на отрезке . Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным. Рассмотрим вначале несобственные интегралы с бесконечными пределами интегрирования. Определение. Пусть функция определена и непрерывна на промежутке , тогда (12) называется несобственным интегралом с бесконечным верхним пределом интегрирования (несобственным интегралом I рода). Если существует и конечен, то несобственный интеграл называется сходящимся; если данный предел не существует или равен , то несобственный интеграл называется расходящимся. Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью , слева – отрезком прямой и неограниченной справа (рис. 15). Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.
Рис. 15 Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования: . (13) Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся. Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом: , (14) где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).
Пример 16. Исследовать на сходимость несобственные интегралы: а) ; б) ; в) ; г) . Решение. а) , следовательно, данный интеграл расходится; б) . Так как при предел не существует, то интеграл расходится; в) Значит, несобственный интеграл сходится и его значение равно ; г) = [выделим в знаменателе полный квадрат: ] = [замена: ] =
Значит, несобственный интеграл сходится и его значение равно .
Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|