|
ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮФункция y=f(x), определенная на некотором отрезке [a, b] (интервале (a, b)), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b] соответствует большее значение функции, то есть если x1 < x2, то f(x1) < f(x2). Функцияy=f(x) убывающая на некотором отрезке [a, b], если меньшему значению аргумента x из [a, b]соответствует большее значение функции x1 < x2, то f(x1) > f(x2). Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке. Функция y=f(x) постоянная на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения. Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции. (-∞, a), (c, +∞) – убывает; (a, b) – постоянная; (b, c) – возрастает. Применим понятие производной для исследования возрастания и убывания функции. Теорема 1. (Необходимое и достаточное условия возрастания функции) 1. Если дифференцируемая функция y=f(x) возрастает на [a, b], то ее производная неотрицательна на этом отрезке, f '(x)≥ 0. 2. Обратно. Если функция y=f(x) непрерывна на [a, b], дифференцируема на (a, b) и ее производная положительна на этом отрезке,f ' (x)≥ 0 для a<x<b, то f(x) возрастает на[a, b]. Доказательство. 1.Докажем первую часть теоремы. Итак, пусть функция y=f(x) возрастает на [a, b]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Δx. Тогда если Δx>0, то x<x+Δx. Поэтому по определению возрастающей функции f(x)<f(x+Δx), то есть f(x+Δx) - f(x)>0. Но тогда и Аналогично, если Δx<0, то x>x+Δx и значит f(x+Δx)-f(x)<0, а Переходя в этом равенстве к пределу при Δx→0, получим
2.Докажем вторую часть теоремы. Пусть f '(x)>0при всех x (a,b). Рассмотрим два любых значения x1 и x2 таких, что x1 < x2. Нужно доказать, что f(x1)< f(x2). По теореме Лагранжа существует такое число c (x1, x2), что Аналогичная теорема имеет место и для убывающих функций. Теорема 2. Если f(x) убывает на[a,b], то Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga≥0, а значит f '(x)≥0. Аналогично иллюстрируется и вторая часть теоремы. Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 – для возрастания или f '(x)<0 – для убывания. 29. Теорема Ферма, Ролля. Если функция Доказательство. Предположим, что При достаточно малых 1) при а переходя к пределу при 2) при откуда, переходя к пределу при Сравнивая полученные для Геометрический смысл теоремы Ферма очевиден: касательная к графику функции 2. Теорема Ролля. Если функция Доказательство. Прежде всего рассмотрим возможный по условиям теоремы случай, когда функция Теорема Лагранжа, коши Теорема Лагранжа Если функция f(x) непрерывна на отрезке [а, b] и дифференцируема в интервале (а,b), то существует такая точка с{а,b), что Следствие 1. Если производная функции равна нулю в каждой точке некоторого промежутка, то функция есть тождественная постоянная в этом промежутке. Следствие 2. Если две функции имеют равные производные в некотором промежутке, то они отличаются в этом промежутке лишь постоянным слагаемым. Корнем (или нулем) функции у = f(x) называется такое значение х = х0 ее аргумента, при котором эта функция обращается в нуль. Геометрически корень функции означает абсциссу точки, в которой график функции пересекает ось их или касается ее. Теорема Коши: Если y = f(x) и у = у(х) - две функции, непрерывные на отрезке [а, b] и дифференцируемые в интервале (а, b) причем ф'(x) не равно 0 для любого х(а, b), то между а и b найдется такая точка с, что Экстремум функции Функция Таким образом, если Если Определение. Точка Аналогично(с заменой слова «меньше» на «больше») определяются точка минимума и минимум функции.Если Максимум и минимум функции представлены на рис. 5.4 и 5.5. Точки минимума и максимума объединяются под общим названием точек экстремума, а минимум и максимум функции объединяются общим названием экстремум функции.
Экстремумы функции Таким образом, понятия максимума и минимума функции носят характер локальных (местных), а не абсолютных понятий. ![]() ![]() Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор... ![]() ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... ![]() ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... ![]() Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|