Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Зависимые и независимые события





Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного наступления, то есть:

Р (А+В) = Р(А) + Р(В) - Р(АВ)

или (2.4)

Для несовместных событий их совместное наступление есть невозможное событие Æ, а вероятность его равна нулю. Следовательно, для несовместных событий правило сложения вероятностей принимает следующий вид:

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.

Для несовместных событий A, B:  
или (2.5)
   

Правило сложения вероятностей справедливо и для конечного числа n попарно несовместных событий, то есть:

P(A1+A2+A3+...+An)=P(A1)+P(A2)+P(A3)+...P(An)

или

  (2.6)

 

 

В случае нескольких совместных событий необходимо по аналогии с рассуждениями о пересечении двух совместных событий исключить повторный учет областей пересечения событий. Рассмотрим три совместных события.

 
 

 

     
A AB B
     
  ABC  
AC C CB

 

Рис. 2.3

 

Для случая трех совместных событий можно записать:

 

Р(А + В + С) = Р(А) + Р(В) + Р(С) - Р(АВ) - Р(АС) - Р(ВС) + Р(АВС).

 

Сумма вероятностей событий А1, А2, А3, ... , Аn, образующих полную группу, равна1, то есть:

P(A1) + P(A2) + P(A3) + ... + P(An) = 1

или

(2.7)

 

Вероятность произведения двух независимых событий А и В равна произведению их вероятностей:

P(AB) = P(A) × P(B),  
P(A B) = P(A) × P(B) (2.8)

 

 

или

События А1, А2, ..., An (n > 2) называются независимыми в совокупности, если вероятность каждого из них не зависит от того, произошли или нет любые события из числа остальных.

Распространим теоремы умножения на случаи n независимых и зависимых в совокупности событий.



Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий.

P(A1 ×A2×A3×…×An) = P(A1)×P(A2) × P(A3) ×…× P(An) (2.9)

Вероятность произведения двух зависимых событий А и В равна произведению вероятности одного из них на условную вероятность другого:

  Р(АВ) = P(B) × Р(А/В) (2.10)  
  Р(А В) = P(B) × Р(А/В)  
  или Р(АВ) = P(A)×Р(В/А)  
  Р(А В) = Р(A)×(В/А)  
Вероятность события В при условии появления события А:  
P(B/A) = или P(B/A) = (2.11)
.  
         

 

Вероятность совместного наступления конечного числа n зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие уже наступили, т.е.

P(A1 × A2 × A3 ×... ×Аn) = Р(A1) × P(A2 / A1) ×P(A3 / A1 × A2).× . . . ×P(An / A1 × A2 × A3 ×…× An-1) ( 2.12)  

Если события А1, А2, ... An - зависимые в совокупности, то вероятность наступления хотя бы одного из них соответственно равна:

(2.13)


Вероятность появления хотя бы одного события из n независимых в совокупности, равна разности между 1 и произведением вероятностей событий, противоположных данным, то есть:

(2.14)


Тема 3. ФОРМУЛЫ ПОЛНОЙ ВЕРОЯТНОСТИ И

БАЙЕСА

Часто мы начинаем анализ вероятностей имея предварительные, априорные значения вероятностей интересующих нас событий. Затем из источников информации, таких как выборка, отчет, опыт и т.д. мы получаем дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить, пересчитать значения априорных вероятностей. Новые значения вероятностей для тех же интересующих нас событий будут уже апостериорными (послеопытными) вероятностями. Теорема Байеса дает нам правило для вычисления таких вероятностей.

Последовательность процесса переоценки вероятностей можно схематично изобразить так:

 

Априорные Новая информация из Байесовский Апостериорные

вероятности каких-либо источников анализ вероятности

 

Пусть событие А может осуществиться лишь вместе с одним из событий Н1, Н2, Н3, ..., Нn, образующих полную группу. Пусть известны вероятности P(H1), P(H2),…P(Hi),…P(Hn). Так как события Hi образуют полную группу, то .Так же известны и условные вероятности события А: P(A/H1), P(A/H2), …P(A/Hi)…, P(A/Hn), i=1, 2, …, n. Так как заранее неизвестно с каким из событий Hi произойдет событие А, то события Hi называют гипотезами.

Необходимо определить вероятность события А и переоценить вероятности событий Hi с учетом полной информации о событии А.

Вероятность события А определяется как:

(3.1)

Эта вероятность называется полной вероятностью.

Если событие А может наступить только вместе с одним из событий Н1, Н2, Н3, ..., Нn, образующих полную группу несовместных событий и называемых гипотезами, то вероятность события А равна сумме произведений вероятностей каждого из событий Н1, Н2, ..., Нn на соответствующую условную вероятность события А.

Условные вероятности гипотез вычисляются по формуле:

 

или (3.2)

 

 

Это - формулы Байеса, (по имени английского математика Т.Байеса, опубликовавшего их в 1764 году) выражение в знаменателе - формула полной вероятности.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.