|
Гипергеометрическое распределение.
Пусть имеется множество N элементов, из которых М элементов обладают некоторым признаком A. Извлекается случайным образом без возвращения n элементов. Требуется найти вероятность того, что из них m элементов обладают признаком A. Искомая вероятность (зависящая от N, M, n, m) определяется по формуле: (4.15) Если по формуле (4.15) вычислить вероятности для всех возможных значений m, то полученный ряд распределения называется гипергеометрическим законом распределения (таблица 4.5): Таблица 4.5
Математическое ожидание и дисперсия случайной величины m, распределенной по гипергеометрическому закону, определяются формулами: (4.16) (4.17)
5. Непрерывные случайные величины. Функция распределения и плотность распределения непрерывной случайной величины. Случайная величина Х называется непрерывной, если ее функция распределения непрерывна и имеет производную. Как уже было показано в разделе 4 (формула 4.2), функцией распределения случайной величины Х называется функция F(X), выражающая вероятность выполнения условия :
(5.1) Функция распределения обладает следующими свойствами: 1.Вероятность попадания случайной величины в промежуток от до равна приращению функции распределения на концах этого промежутка:
(5.2), так как вероятность любого отдельного значения случайной величины равна нулю, если функция распределения непрерывна при этом значении, т. е.: , когда F(X) - непрерывна в точке = 2.Функция распределения удовлетворяет условиям: (5.3) Плотностью распределения (дифференциальной функцией) непрерывной случайной величины называется функция
f(x) = (x). (5.4) Плотность распределения любой случайной величины неотрицательна: Несобственный интеграл от дифференциальной функции в пределах от - до + равен 1: (5.5) График функции y = f(x) называется кривой распределения или графиком плотности распределения. Кривая y = f (x) располагается над осью абсцисс. Вероятность попадания случайной величины в промежуток от до может быть вычислена по формуле: (5.6) Подинтегральное выражение f(x)dx называется элементом вероятности. Оно выражает вероятность попадания случайной точки в промежуток между точками х и , где бесконечно малая величина. Функция распределения F(x) выражается через плотность f(x) формулой: (5.7) Математическое ожидание непрерывной случайной величины Х вычисляется по формуле: (5.8), дисперсия (5.9)
Нормальное распределение
Если плотность распределения (дифференциальная функция) случайной переменной определяется выражением: (5.10) то говорят, что Х имеет нормальное распределение с параметрами а и . Вероятностный смысл параметров: =М(X), а . Обозначение: Для расчета вероятности попадания нормально распределенной случайной величины Х в промежуток от до используется формула:
(5.11) (интеграл Лапласа) Формула (5.11) иногда в литературе называется интегральной теоремой Лапласа. Функция обладает свойствами: 3 ) (см. таблицу приложения 2). Функция табулирована. В частности для симметричного относительно а промежутка имеем: (5.12) Формула (5.12) применима и к частоте m, поскольку ее закон распределения при достаточно большом числе испытаний практически совпадает с нормальным. Применительно к случайной величине m, с учетом ее числовых характеристик M(m) = np и (5.13) формула (5.12) примет вид: (5.14) Формула (5.12) может быть применена и к относительной частоте с числовыми характеристиками и (5.15) (5.16) С вероятностью, очень близкой к единице (равной нормально распределенная случайная величина Х удовлетворяет неравенству:
(5.17) В этом состоит правило трех сигм: если случайная величина распределена по нормальному закону, то ее отклонение от математического ожидания практически не превышает . Локальная теорема Муавра-Лапласа. При р и p 1 и достаточно большом n биноминальное распределение близко к нормальному закону (причем их математические ожидания и дисперсии совпадают), т.е. имеет место равенство: , где , a =nр
Тогда: (5.18) для достаточно больших n (здесь (х) - плотность вероятностей стандартной нормальной случайной величины и ). Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|