|
Формулы расчёта ошибки выборки для собственно-случайного отбора
Здесь - выборочная дисперсия значений признака; - выборочная дисперсия доли значений признака; - объем выборки; - объем генеральной совокупности; - доля обследованной совокупности; - поправка на конечность совокупности[4].
Определение численности (объема) выборки Одной из важнейших проблем выборочного метода является определение необходимого объема выборки. От объема выборки зависит размер средней ошибки и экономичность проводимого выборочного наблюдения, т.к. чем больше объем выборки, тем больше затраты на изучение элементов выборки, но тем меньше при этом ошибка выборки. Из формулы предельной ошибки и формул средних ошибок выборки определяются формулы необходимой численности выборки для различных способов отбора. Таблица 7.2 Формулы расчёта необходимой численности выборки Для собственно-случайного отбора
Интервальное оценивание Мы уже знаем, что . Если представляет собой предел, которым ограничена сверху абсолютная величина , то . Следовательно,
(7.4)
Мы получили интервальную оценку генеральной средней. Из теоремы Чебышева следует, что
. (7.5) Интервальной оценкой называют оценку, которая определяется двумя числами - концами интервала, который с определенной вероятностью накрывает неизвестный параметр генеральной совокупности. Интервал, содержащий оцениваемый параметр генеральной совокупности, называют доверительным интервалом. Для его определения вычисляется предельная ошибка выборки , позволяющая установить предельные границы, в которых с заданной вероятностью (надёжностью) должен находиться параметр генеральной совокупности. Предельная ошибка выборки равна t-кратному числу средних ошибок выборки. Коэффициент t позволяет установить, насколько надежно высказывание о том, что заданный интервал содержит параметр генеральной совокупности. Если мы выберем коэффициент таким, что высказывание в 95% случаев окажется правильным и только в 5% - неправильным, то мы говорим: со статистической надежностью в 95% доверительный интервал выборочной статистики содержит параметр генеральной совокупности. Статистической надежности в 95% соответствует доверительная вероятность - 0,95. В 5% случаев утверждение "параметр принадлежит доверительному интервалу" будет неверным. То есть 5% задает уровень значимости () или 0,05 вероятность ошибки. Обычно в статистике уровень значимости выбирают таким, чтобы он не превысил 5% ( < 0,05). Доверительная вероятность и уровень значимости дополняют друг друга до 1 (или 100%) и определяют надежность статистического высказывания. С помощью доверительного интервала можно оценить не только генеральную среднюю, но и другие неизвестные параметры генеральной совокупности. Для оценки математического ожидания а (генеральной средней ) [5]нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении s генеральной совокупности (на практике - при большом объеме выборки, т.е. при n ³ 30) и собственно-случайном повторном отборе формула (7.5.2) примет вид: (7.6) где t определяется по таблицам функции Лапласа из соотношения 2F0(t) = g; - среднее квадратическое отклонение; n - объем выборки (число обследованных единиц). D определяется по формуле: Для оценки математического ожидания а (генеральной средней ) нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении s генеральной совокупности (при большом объеме выборки, т.е. при n 30) и собственно-случайном бесповторном отборе формула (7.6) примет вид:
(7.7) D определяется по формуле: Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака Х по выборочной средней при неизвестном среднем квадратическом отклонении s генеральной совокупности (на практике - при малом объеме выборки, т.е. при n < 30) и собственно-случайном повторном отборе формула (7.6) примет вид:
(7.8) где t определяется по таблицам Стьюдента по уровню значимости a = 1 - g и числу степеней свободы k = n - 1; s - исправленное выборочное среднее квадратическое отклонение; n - объем выборки. D определяется по формуле: Для оценки математического ожидания а (генеральной средней) нормально распределенного количественного признака Х по выборочной средней при неизвестном среднем квадратическом отклонении s генеральной совокупности (при малом объеме выборки, т.е. при n < 30) и собственно-случайном бесповторном отборе формула (7.8) примет вид:
(7.9) D определяется по формуле: Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле при большом объеме выборки, т.е. при n 30) и собственно-случайном повторном отборе формула (7.5) примет вид:
(7.10) где t определяется по таблицам функции Лапласа из соотношения 2F0(t) = g; w - выборочная доля; n - объем выборки (число обследованных единиц). D определяется по формуле: Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле при большом объеме выборки, т.е. при n 30 и собственно-случайном бесповторном отборе формула (7.10) примет вид:
(7.11) D определяется по формуле: Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле при малом объеме выборки, т.е. при n < 30 и собственно-случайном повторном отборе формула (7.10) примет вид: (7.12) где t определяется по таблицам Стьюдента по уровню значимости a = 1 - g и числу степеней свободы k = n - 1. D определяется по формуле: Для оценки генеральной доли р нормально распределенного количественного признака по выборочной доле при малом объеме выборки, т.е. при n < 30 и собственно-случайном бесповторном отборе формула (7.12) примет вид:
(7.13) D определяется по формуле:
ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|