|
Часть1 Кратные и криволинейные интегралы, теория поля.Лекция 1. Двойной интеграл. Задача об объеме цилиндрического тела. К определенному интегралу мы пришли от задачи о площади криволинейной трапеции. К двойному интегралу мы приходим, решая задачу об объеме цилиндрического тела. - Рассмотрим, например, прямой круговой цилиндр с высотой h и радиусом основания R его объем равен - Объем цилиндра той же высоты, в основании которого лежит эллипс с полуосями равен . - Объем цилиндра той же высоты, с площадью основания , равен . Пусть надо вычислить объем цилиндрического тела, в основании которого лежит область с площадью , а высота изменяется от точки к точке так, что конец ее описывает некоторую поверхность (). Тогда логично разбить область на области малого размера – организовать разбиение области на области – элементы разбиения. На каждом элементе отметим точку M(x,y) и построим над этим элементом прямой круговой цилиндр, высота которого постоянна для всех точек элемента и равна . Вычислим объем этого элементарного цилиндра. Просуммируем объемы всех элементарных цилиндров. Эта сумма и даст приближенно искомый объем цилиндрического тела тем точнее, чем меньше будут размеры элементов разбиения. Этот алгоритм используем для построения двойного интеграла
Двойной интеграл [1] .
Теорема существования [2]. Пусть функция непрерывна в замкнутой односвязной области D[3]. Тогда двойной интеграл существует как предел интегральных сумм. . Замечание [4]. Предел этот не зависит от - способа выбора разбиения, лишь бы выполнялось условие А - выбора «отмеченных точек» на элементах разбиения, - способа измельчения разбиения, лишь бы выполнялось условие В
Свойства двойного интеграла [5].
1. Линейность б) свойство однородности . = Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Они равны интегральным суммам для правых частей равенств, так как число слагаемых конечно. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.
2. Аддитивность. Доказательство. Выберем разбиение области D так, чтобы ни один из элементов разбиения (первоначально и при измельчении разбиения) не содержал одновременно как элементы D1, так и элементы D2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.
3. -площадь области D. 4. Если в области D выполнено неравенство , то (неравенство можно интегрировать). Доказательство. Запишем неравенство для интегральных сумм и перейдем к пределу. Заметим, что, в частности, возможно 5. Теорема об оценке. Если существуют константы , что , то Доказательство. Интегрируя неравенство (свойство 4), получим . По свойству 1 константы можно вынести из-под интегралов. Используя свойство 3, получим искомый результат.
6. Теорема о среднем (значении интеграла). Существует точка , что . Доказательство. Так как функция непрерывна на замкнутом ограниченном множестве , то существует ее нижняя грань и верхняя грань . Выполнено неравенство . Деля обе части на , получим . Но число заключено между нижней и верхней гранью функции. Так как функция непрерывна на замкнутом ограниченном множестве , то в некоторой точке функция должна принимать это значение. Следовательно, . Геометрический смысл теоремы состоит в том, что существует цилиндр постоянной высоты , объем которого равен объему цилиндрического тела
ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|