Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Соотн. между уск. 2-х точек при плоском движении.





v B= v A+ ω x AB.

a B=d v B/dt=d v A/dt+(d ω /dt)x AB + ω x(d AB /dt)= a A+ ε x AB + ω x(ω x

AB).

Считая, что ε х АВ =(aBA)τ;

(aBA)n=ω²∙AB, окончательно получим:

a B= a A+(a BA)τ+(a BA)n

a A – ускорение полюса;

a BA – ускорение движения вокруг полюса.

2. Сила трения скольжения. Законы Кулона для Fтр.ск .:

1)Сила трения скольжения лежит в интервале 0£ Fтр£ Fмах;

2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность

3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения

4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала.

Билет №12.

  1. Мгновенный центр скоростей, способы нахождения МЦС.
  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

 

МЦС. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. v P= v O+ v PO=0, vO=ω∙OP=>OP= vO/ω.

Способы нахождения:

1) на основе физического условия задачи.

2) На основе предваритель-ного определения скорости двух точек.

 

Трение качения. Коэффициент трения качения.

Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N ’ опорной поверхности препятствует качению.

Нам нужен момент сопротивления качению => заменим N ’ и представим в виде F тр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально.

Билет №13.

  1. Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.
  2. Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.

Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.

Движение твердого тела, у которого одна точка неподвижна, называется сферическим. Количество степеней свободы n=3. (XA, YA, ZA).

Положение тела определяется с помощью углов Эйлера. Определение: свяжем с телом подвижную систему координат Oxyz. Плоскость xOy пересекает неподвижную плоскость x1Oy1 по прямой ОК – линии узлов.

Ψ – угол прецессии;

φ – угол собственного вращения

θ – угол нутации.

Все углы против часовой стрелке.

Если заданы функции Ψ=f1(t); φ=f2(t); θ=f3(t) то движение полностью определено.

Условия равновесия для произвольной простр.системы сил, а также следствия из этих уравнений.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

åFkх=0 åFkу=0 åFkz=0 åМх(Fk)=0 åМу(Fk)=0 åМz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы Î пл-ти хоу, тогда: åFkх=0 åFkу=0 åМо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы ôô оси оу, тогда åFkх=0 åМо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn ôô оси оz, тогда: åFkz=0 åМх(Fk)=0 åМу(Fk)=0

Вторая форма условия равновесия для пороизвольной плоской системы сил:

åМА(Fk)=0 åМВ(Fk)=0 åМС(Fk)=0 – причем т.А, т,В, т.С Ï одной прямой.

- Докажем необходимость этих условий:

Допустим, система сил нах-ся в равновесии. Тогда очевидно, что å моментов всех сил относительно любой точки пл-ти=0, т.е. выполняются эти 3 условия.

- Докажем достаточность этих условий:

Доказать достоточность – это значит доказать, что при выполнении этих усл-й система нах-ся в равновесии. Доказывать будем методом от противного, поэтому предположим, что эти усл-я выполняются, но система не нах-ся в равновесии, т.е. существует R*¹0 эквив.данной сист.сил.

Рассмотрим усл-е первое и 2-е: для того, чтобы они выполнялись необходимо, чтобы R* проходил через т.А и т.В. Согласно третьему условию hR=0. Поскольку т.С Ï прямой АВ это может выполняться только в случае R*=0, т.е. наше предположение не верно и система действительно нах-ся в равновесии.

Третья форма усл-я равновесия для произвольной плоской системы сил.

åFkz=0 åМА(Fk)=0 åМВ(Fk)=0 – причем ось ох не перпендикулярна АВ.

- Необходимость этого усл-я очевидна, т.к.если система нах-ся в равновесии, то главный вектор и главный момент =0 относительно любой точки.

- Докажем достаточность этих условий:

Предположим, что система не нах-ся в равновесии и сущ-ет, т.е. сущ-ет R* и R* ¹0 является равнодействующей данной системы сил. Для того, чтобы выполнялось усл-е 2 и 3 необходимо, чтобы R* проходил через АВ.

Потребуем выполнения усл-я R*cosa=0, поскольку х не перпендикулярна АВ, то R* должно быть равно 0, т.о. мы доказали, что эти усл-я достаточны для того чтобы система находилась в равновесии.

На основании двух изложенных форм ур-й равновесия для плоской системы параллельных сил можно записать еще один вид ур-я равновесия для плоской системы параллельных сил:

åМА(Fk)=0 åМВ(Fk)=0, АВ не параллельна F1, F2, F3,…,Fn

 

Билет №14.

  1. Определение скоростей точек плоской фигуры с помощью МЦС.
  2. Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.

Опред. v 2-х точек с пом. МЦС.

Зная положение МЦС и скорость какой-либо точки фигуры, можно найти скорости всех точек плоской фигуры. Пусть P – МЦС и известна скорость какой-либо точки фигуры vА, тогда ω= vА/AP. vB= vАPB/PA. Соединив конец вектора vB с точкой Р, получим распределение скоростей вдоль отрезка РВ.

Теорема Вариньона.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F 1, F 2,…, F n) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

M O(R)= r x R = r x∑ F i=∑(r x F i)= ∑ M Oi(F i).

Ч. т. д..

 

Билет №15.

  1. Мгновенный центр ускорений. Частные случаи.
  2. Лемма о параллельном переносе силы.

МЦУ. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

a Q= a A+ a AQ=0. Угол между a QA и QA tgα= a BAτ/ a BAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4 Þ

1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к a A отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F’ и F ”.

| F |=| F’ |=| F” |. F ~(F, F’, F ”), т.к. (F ’, F ”) ~ 0, то

F ~ (F, F ’, F ”) ~ (F, F,F”) ~ (F ’, M (F, F ”)).

Но M (F, F ”)= BA x F = M B(F).

Получаем:

F ~ (F ’, M (F, F ”))

Ч. т. д.

 

Билет №16.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Аналитическое выражение для моментов силы относительно осей координат.






Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.