Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Векторная система координат.





Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

 

Векторная система координат.

Положение точки М определено, если радиус-вектор rиз центра О выражен функцией времени t r= r(t) Þ задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

r(t), тогда

(t+Δt)àr(t+Δt), получаем

Δr=r(t+Δt)-r(t) Þ

Vсрr/Δt. V=lim(Δr/Δt)=dr/dt.

aсрV/Δt. a=lim(Δv/Δt)=dV/dt= d²r(t)/dt².

Переход от векторной формы к координатной:

r(t)=x(t)i+y(t)j+z(t)k.

Обратно:

x=r(t)×i, y=r(t)×j, z=r(t)×k.

Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется Þ BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’),

M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R’=Q1’+Q2’. Т. к. Q1’= -Q1, Q2’= -Q2 Þ R= -R’. Доказано, что система двух пар эквивалентна системе (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’) Þ M=M1+M2.



УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M1+M2+…+Mn=0.

Билет №2.

  1. Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.
  2. Аксиомы статики.

Декартова система координат.

Вектор r можно разложить по базису I, j, k: r=xi+yj+zk.

Движение материальной точки полностью определено, если заданы три непрерывные и однозначные функции от времени t: x=x(t), y=y(t), z=z(t), описывающие изменение координат точки со временем. Эти уравнение называются кинематическими уравнениями движения точки. Радиус-вектор r является функцией переменных x, y, z, которые, в свою очередь, являются функциями времени t. Поэтому производная r׳(t) может быть вычислена по правилу

dr/dt=∂r/∂x∙dx/dt+∂r/∂y∙dy/dt+∂r/∂z∙dz/dt.

Отсюда вытекает, что v=vxi+vyj+vzk.

V=√(vx²+vy²+vz²)

Ускорением точки в данный момент времени назовем вектор а, равный производной от вектора скорости v по времени. А=x׳׳(t)I+y׳׳(t)j+z׳׳(t)k.

А=√((x׳׳(t))²+(y׳׳(t))²+(z׳׳(t))²)

Аксиомы статики.

1) 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

2) Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.

3) Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

4) Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

Действие связей можно заменить действием сил – реакций связи.

 

Билет №3.

  1. Естественный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Алгебраический и векторный момент силы относительно точки.

Естественный способ.

Если задана траектория движения точки, выбрано начало и положительное направление отсчета и известна S=S(t) зависимость пути от времени, то такой способ задания движения точки называется естественным. V=dr/dt∙dS/dS=S׳(t)∙dr/dS=S׳(t)∙τ= =vττ.Dr/dS=τ. Τ направлена всегда в «+» направлении отсчета S.

A=dv/dt=S׳׳(t)∙τ+S׳(t)∙dτ/dt=S׳׳∙τ+ (S׳)²n/ρ. Aτ=S׳׳-тангенциальное ускорение, an=(S׳)²/ρ-нормальное (центростремительное) ускорение, ρ-радиус кривизны.

A=√((aτ)²+(an)²).

Билет №4.

  1. Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.
  2. Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.

Полярные координаты

Ox – полярная ось, φ – полярный угол, r – полярный радиус. Если задан закон r=r(t), φ=φ(t), то задано движение в полярной системе координат. Пусть r=r, - единичный вектор, pº┴rº- единичный вектор. Тогда v=dr/dt=r׳+

rd/dt=r׳+rφ׳=vr+vppº.vp и vr – трансверсальная и радиальная составляющая скорости. A=dv/dt=d(r׳+rφ׳)/ dt=r׳׳+r׳d/dt+r׳φ׳+rφ׳׳+rφ׳∙

d/dt=(r׳׳-(rφ׳)²)+(rφ׳׳+2r׳φ׳)= ar+ap.

r²=x²+y², φ=arctg(y/x).

vr=r׳=(xvx+yvy)/r,

vp=rφ׳=(xvy-yvx)/r

Т. о приведении произвольной системы сил к силе и паре сил.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO=F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

Билет №5.

  1. Определение скорости точки при задании ее движения в криволинейных координатах.
  2. Момент силы относительно оси.

Скорость точки в криволинейных координатах.

V=dr/dt=(∂r/∂q1)∙dq1/dt+(∂r/∂q2)∙dq2/dt+(∂r/∂q3)∙dq3/dt.

v=(dq1/dt)H1e1+(dq2/dt)H2e2+(dq3/dt)H3e3.

v=√(dq1/dt)²H1²+(dq2/dt)²H2²+(dq3/dt)²H3². vq1=(dq1/dt)H1, vq2=(dq2/dt)H2, vq3=(dq3/dt)H3.

Пример: 1) скорость в цилиндрической системе.

Т.к. x=ρcosφ, y=ρsinφ, z=z, то

H1=1, H2=ρ, H3=1.

vρ=dρ/dt, vφ=ρdφ/dt, vz=dz/dt.

2) Движение по винтовой.

ρ=R=const, φ=kt, z=ut.

vρ=0, vφ=kR, vz=u.

Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=±2SΔABC=±F∙h.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.

 

Билет №6.

  1. Понятие о криволинейных координатах. Координатные линии и координатные оси.
  2. Основные виды связей и их реакции.

Криволинейные координаты.

Устанавливают закон выбора 3 чисел q1, q2, q3. q1, q2, q3 – криволинейные координаты. Функция координат: r=r(q1,q2,q3) (из точки О).

Возьмем точку М0 с координатами q1,q10,q20.

X=X(q1,q20,q30);

Y=Y(q1,q20,q30);

Z=Z(q1,q20,q30);

Определяют кривую (переменная только q1). Кривая – координатная линия, соответствующая изменению q1 (аналогично q2 и q3). Касательные к координатным линиям, проведенные в точке M0 в сторону возрастания соответствующих координат – координатные оси: [q1], [q2], [q3].

 

H1=

Коэффициент Ламе.

e1=(∂r/∂q1)/H1.

Аналогично Н2, Н3, е2, е3.

Виды связей и их реакции.

Связи – ограничения, накладываемые на свободное твердое тело (занимает произвольное положение в пространстве). Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

1)Гладкая поверхность – по общей нормали.

2)Нить – вдоль к точке закрепления.

3)Сферический шарнир – по любому радиусу.

4)Сферический шарнир – по любому радиусу.

5)Подпятник, подшипник – любое направление.

Дополнительно:

А) Скользящий;

Б) Внутренний.

 

Билет №7.

  1. Число степеней свободы твердого тела в общем и частных случаях его движения.
  2. Лемма о параллельном переносе силы.

Билет №8.

  1. Поступательное движение твердого тела. Число степеней свободы, уравнения движения. Скорости и ускорения точек тела.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Поступательное движение.

Существует 5 видов движения – поступательное, вращательное вокруг неподвижной оси, плоское (плоскопараллельное), сферическое, общий случай. Поступательное движение твердого тела – движение, при котором любая прямая этого тела при движении остается параллельной самой себе.

Траектории любой точки тела, совершающего поступательное движение, одинаковы.

Радиус – вектор любой точки движущегося поступательно тела равен rB=rA+AB, AB=const. drB/dt=drA/dt+ dAB/dt=drA/dt => vB=vA, aB=aA

Билет №9.

  1. Вращение твердого тела вокруг неподвижной оси. Векторные и скалярные формулы для скоростей и ускорений точек тела.
  2. Теорема о приведении произвольной системы сил к силе и паре – основная теорема статики.

Билет №10.

  1. Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.
  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

2. Инварианты системы сил. Частные случаи приведения.

Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.

1.Главный вектор R=∑Fi=const.

2.Скалярное произведение главного вектора и главного момента LOR=const=FxMx+ FyMy+FzMz.

Доказательство: Умножим обе части выражения (1) на R:

MO1R= MOR+(O1OxR)R Þ ПрR(LO1)= ПрR(LO)=LO1R∙ ∙cos(LO1^R)= LO2Rcos(LO2^R).

LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz

Приведение к простейшему виду:

1) MO=0, R¹0 à к равнодействующей, равной R, проходящей через О.

2) R=0, MO¹0 à к паре с моментом MO (независимо от О).

R¹0, MO¹0, MORàк равнодействующей, равной R, проходящей через О1: ОО1=d= |MO| / |R|. Доказательство: R и пара сил с моментом MO лежат в одной плоскости Þ

Þ силы R и R” уравновешиваются, систему можно заменить равнодействующей R’.

3) MOR¹0, R¹0, MO¹0, R не перпендикулярна MO – приводится к динаме.

Доказательство: Разложим MO на 2 составляющих: M1 иM2. M2 представим в виде пары сил R’ и R”. Силы Rи R” уравновешиваются, а M1 перенесем в точку O1 (свободы).

В результате получили винт R’,M1, проходящий через точку О1.

Прямая, проходящая через точку О1 – ось динамы.

Билет №11.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
  2. Равновесие тела с учетом трения скольжения. Законы Кулона.

Билет №12.

  1. Мгновенный центр скоростей, способы нахождения МЦС.
  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

 

МЦС. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. vP=vO+vPO=0, vO=ω∙OP=>OP= vO/ω.

Способы нахождения:

1) на основе физического условия задачи.

2) На основе предваритель-ного определения скорости двух точек.

 

Билет №13.

  1. Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.
  2. Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.

Билет №14.

  1. Определение скоростей точек плоской фигуры с помощью МЦС.
  2. Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.

Теорема Вариньона.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F1, F2,…,Fn) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

MO(R)=rxR=rx∑Fi=∑(rxFi)= ∑MOi(Fi).

Ч. т. д..

 

Билет №15.

  1. Мгновенный центр ускорений. Частные случаи.
  2. Лемма о параллельном переносе силы.

МЦУ. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

aQ=aA+aAQ=0. Угол между aQA и QA tgα=aBAτ/aBAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4 Þ

1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к aA отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

Билет №16.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Аналитическое выражение для моментов силы относительно осей координат.

Билет №17.

  1. Свободное движение твердого тела. Скорости и ускорения его точек.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Билет №18.

  1. Сложное движение точки. Основные понятия и определения. Примеры.
  2. Центр системы параллельных сил. Формулы для радиуса-вектора и координат центра системы параллельных сил.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Билет №19.

  1. Сложное движение точки. Теорема о сложении скоростей. Примеры.
  2. Центр тяжести тела. Методы нахождения центра тяжести.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

1) Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

2) Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.

3) Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Билет №20.

  1. Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
  2. Лемма о параллельном переносе силы.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

 

Билет №21.

  1. Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Ускорение Кориолиса. Правило Жуковского.

Полное ускорение точки А, участвующей в сложном движении

aA=ar+ae+2ω×vr. Слагаемое aК=2ω×vr называется ускорением Кориолиса.

aK=2ωvrsin(ω,vr). Частные случаи:

А) ωº0 – смена знака

Б) vrº0 – относительный покой (смена знака движения).

В) sin(ω,vr)º0, ω||vr.

Правило Жуковского. Ускорение Кориолиса равно проекции относительной скорости на плоскость, перпендикулярную ω, увеличенной в 2ω раз и повернутой на 90° в направлении круговой стрелки ω.

2. Пара сил. ∑ моментов сил, составляющих пару.

Пара сил – система 2-х равных по модулю и противоположных по направлению сил, действующих на твердое тело. ∑F=0; ∑M≠0.

Расстояние между линиями действия – плечо d. Пара сил характеризуется плоскостью действия, моментом пары.

ТЕОРЕМА: Векторный момент пары сил равен векторному моменту одной из её сил относительно другой.

Доказательство:

MO(F1)+MO(F2)=rAxF1+rAxF2= rAxF1-rBxF1=(rA-rB) xF1. Из сложения треугольником OA+AB=OB=>AB=OB-OA => MO(F1)+MO(F2)=ABxF1=MA(F1) => сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты.

Билет №22.

  1. Сложение вращений твердого тела вокруг пересекающихся осей.
  2. Зависимость между главными моментами системы сил относительно двух центров приведения.

Билет №23.

  1. Определение ускорений точек плоской фигуры при известном положении МЦУ.
  2. Система сходящихся сил. Условия равновесия.

Билет №24.

  1. Способы определения углового ускорения при плоском движении твердого тела.
  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

Билет №25.

  1. Полная и локальная производные вектора. Формула Бура.
  2. Центр тяжести тела. Методы определения положения центра тяжести.

Билет №26.

  1. Пара вращений.
  2. Теорема о приведении произвольной системы сил к паре – основная теорема статики.

Пара вращений.

При противоположных направлениях векторов ωe и ωr и равенстве их модулей (ωe = ωr), если условие ωe=-ωr выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.

Действительно, ω=ωe+ωr=

-ωr+ωr=0, и для любой точки тела справедливы соотношения: v=ωe×r1+ωr×r2=ωe×(r1-r2)=ωe×OeOr=ωr×OrOe;

Следовательно, скорости всех точек тела в данном случае одинаковы и равны скорости поступательного движения.

Билет №27.

  1. Сложение вращений твердого тела вокруг параллельных осей.
  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

Билет №28.

  1. Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.
  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

Главный вектор, момент.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)=Rx/R;

Ry=∑Fky; cos(y,R)=Ry/R;

Rz=∑Fkz; cos(z,R)=Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)

Билет №29.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Билет №30.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

Главный вектор, момент.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)=Rx/R;

Ry=∑Fky; cos(y,R)=Ry/R;

Rz=∑Fkz; cos(z,R)=Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)

Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

 

Векторная система координат.

Положение точки М определено, если радиус-вектор rиз центра О выражен функцией времени t r= r(t) Þ задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

r(t), тогда

(t+Δt)àr(t+Δt), получаем

Δr=r(t+Δt)-r(t) Þ

Vсрr/Δt. V=lim(Δr/Δt)=dr/dt.

aсрV/Δt. a=lim(Δv/Δt)=dV/dt= d²r(t)/dt².

Переход от векторной формы к координатной:

r(t)=x(t)i+y(t)j+z(t)k.

Обратно:

x=r(t)×i, y=r(t)×j, z=r(t)×k.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.