Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Векторная система координат.





Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

 

Векторная система координат.

Положение точки М определено, если радиус-вектор r из центра О выражен функцией времени t r= r (t) Þ задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

r (t), тогда

(t+Δt)à r (t+Δt), получаем

Δ r = r (t+Δt)- r (t) Þ

V срr /Δt. V =lim(Δ r /Δt)=d r /dt.

a срV/ Δt. a=lim(Δ v /Δt)=d V /dt= d² r (t)/dt².

Переход от векторной формы к координатной:

r (t)=x(t) i +y(t) j +z(t) k.

Обратно:

x= r (t)× i, y= r (t)× j, z= r (t)× k.

Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)= BA × R = BA ×(F 1+ F 2)= BA × F 1+ BA × F 2. При переносе сил вдоль линии действия момент пары не меняется Þ BA × F 1=M1, BA × F 2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F 1, F 1’), (F 2, F 2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q 1, Q 1’) и (Q 2, Q 2’). При этом M 1= M (Q 1, Q 1’)= M (F 1, F 1’),

M 2= M (Q 2, Q 2’)= M (F 2, F 2’).

Сложим силы R = Q 1+ Q 2, R’ = Q 1’+ Q 2’. Т. к. Q 1’= - Q 1, Q 2’= - Q 2 Þ R = - R ’. Доказано, что система двух пар эквивалентна системе (R, R ’). M (R, R ’)= BA × R = BA ×(Q 1+ Q 2)= BA × Q 1+ BA × Q 2= M (Q 1, Q 1’)+ M (Q 2, Q 2’)= M (F 1, F 1’)+ M (F 2, F 2’) Þ M = M 1+ M 2.

УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M 1+ M 2+…+ Mn =0.

Билет №2.

  1. Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.
  2. Аксиомы статики.

Декартова система координат.

Вектор r можно разложить по базису I, j, k: r =x i +y j +z k.

Движение материальной точки полностью определено, если заданы три непрерывные и однозначные функции от времени t: x=x(t), y=y(t), z=z(t), описывающие изменение координат точки со временем. Эти уравнение называются кинематическими уравнениями движения точки. Радиус-вектор r является функцией переменных x, y, z, которые, в свою очередь, являются функциями времени t. Поэтому производная r ׳(t) может быть вычислена по правилу

d r /dt=∂ r /∂x∙dx/dt+∂ r /∂y∙dy/dt+∂ r /∂z∙dz/dt.

Отсюда вытекает, что v =vx i +vy j +vz k.

V =√ (vx²+vy²+vz²)

Ускорением точки в данный момент времени назовем вектор а, равный производной от вектора скорости v по времени. А =x׳׳(t) I +y׳׳(t) j +z׳׳(t) k.

А=√((x׳׳(t))²+(y׳׳(t))²+(z׳׳(t))²)

Аксиомы статики.

1) 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

2) Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.

3) Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

4) Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

Действие связей можно заменить действием сил – реакций связи.

 

Билет №3.

  1. Естественный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Алгебраический и векторный момент силы относительно точки.

Естественный способ.

Если задана траектория движения точки, выбрано начало и положительное направление отсчета и известна S=S(t) зависимость пути от времени, то такой способ задания движения точки называется естественным. V=d r /dt∙dS/dS=S׳(t)∙d r /dS=S׳(t)∙ τ = =vττ. D r /dS= τ. Τ направлена всегда в «+» направлении отсчета S.

A =d v /dt=S׳׳(t)∙ τ +S׳(t)∙d τ /dt=S׳׳∙ τ+ ( S׳)² n /ρ. Aτ=S׳׳-тангенциальное ускорение, an=(S׳)²/ρ-нормальное (центростремительное) ускорение, ρ-радиус кривизны.

A=√((aτ)²+(an)²).

Билет №4.

  1. Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.
  2. Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.

Полярные координаты

Ox – полярная ось, φ – полярный угол, r – полярный радиус. Если задан закон r=r(t), φ=φ(t), то задано движение в полярной системе координат. Пусть r = r, - единичный вектор, pº┴rº - единичный вектор. Тогда v =d r /dt=r׳ +

rd /dt=r׳ +rφ׳ =vr +vp pº. vp и vr – трансверсальная и радиальная составляющая скорости. A =d v /dt=d(r׳ +rφ׳ )/ dt=r׳׳ +r ׳ d /dt+r׳φ׳ +rφ׳׳ +rφ׳∙

d /dt=(r׳׳-(rφ׳)²) +(rφ׳׳+2r׳φ׳) = ar +ap .

r²=x²+y², φ=arctg(y/x).

vr=r׳=(xvx+yvy)/r,

vp=rφ׳=(xvy-yvx)/r

Т. о приведении произвольной системы сил к силе и паре сил.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом M O системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F 1, F 2,…, F n в точку О: F O= F 1 + F 2+…+ F n= ∑ F k. При этом получаем каждый раз соответствующую пару сил (F 1, F 1”)…(F n, F n”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F 1, F 1”)= r 1x F 1=MO(F 1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(F k)= ∑ r kx F k => (F 1, F 2,…, F n) ~ (R, M O) (не зависит от выбора точки О).

Билет №5.

  1. Определение скорости точки при задании ее движения в криволинейных координатах.
  2. Момент силы относительно оси.

Скорость точки в криволинейных координатах.

V =d r /dt=(∂ r /∂q1)∙dq1/dt+(∂ r /∂q2)∙dq2/dt+(∂ r /∂q3)∙dq3/dt.

v= (dq1/dt)H1 e 1+(dq2/dt)H2 e 2+(dq3/dt)H3 e 3.

v=√(dq1/dt)²H1²+(dq2/dt)²H2²+(dq3/dt)²H3². vq1=(dq1/dt)H1, vq2=(dq2/dt)H2, vq3=(dq3/dt)H3.

Пример: 1) скорость в цилиндрической системе.

Т.к. x=ρcosφ, y=ρsinφ, z=z, то

H1=1, H2=ρ, H3=1.

vρ=dρ/dt, vφ=ρdφ/dt, vz=dz/dt.

2) Движение по винтовой.

ρ=R=const, φ=kt, z=ut.

vρ=0, vφ=kR, vz=u.

Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=±2SΔABC=±F∙h.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.

 

Билет №6.

  1. Понятие о криволинейных координатах. Координатные линии и координатные оси.
  2. Основные виды связей и их реакции.

Криволинейные координаты.

Устанавливают закон выбора 3 чисел q1, q2, q3. q1, q2, q3 – криволинейные координаты. Функция координат: r = r (q1,q2,q3) (из точки О).

Возьмем точку М0 с координатами q1,q10,q20.

X=X(q1,q20,q30);

Y=Y(q1,q20,q30);

Z=Z(q1,q20,q30);

Определяют кривую (переменная только q1). Кривая – координатная линия, соответствующая изменению q1 (аналогично q2 и q3). Касательные к координатным линиям, проведенные в точке M0 в сторону возрастания соответствующих координат – координатные оси: [q1], [q2], [q3].

 

H1=

Коэффициент Ламе.

e 1=(∂ r /∂q1)/H1.

Аналогично Н2, Н3, е 2, е 3.

Виды связей и их реакции.

Связи – ограничения, накладываемые на свободное твердое тело (занимает произвольное положение в пространстве). Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

1)Гладкая поверхность – по общей нормали.

2)Нить – вдоль к точке закрепления.

3)Сферический шарнир – по любому радиусу.

4)Сферический шарнир – по любому радиусу.

5)Подпятник, подшипник – любое направление.

Дополнительно:

А) Скользящий;

Б) Внутренний.

 

Билет №7.

  1. Число степеней свободы твердого тела в общем и частных случаях его движения.
  2. Лемма о параллельном переносе силы.

Билет №8.

  1. Поступательное движение твердого тела. Число степеней свободы, уравнения движения. Скорости и ускорения точек тела.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Поступательное движение.

Существует 5 видов движения – поступательное, вращательное вокруг неподвижной оси, плоское (плоскопараллельное), сферическое, общий случай. Поступательное движение твердого тела – движение, при котором любая прямая этого тела при движении остается параллельной самой себе.

Траектории любой точки тела, совершающего поступательное движение, одинаковы.

Радиус – вектор любой точки движущегося поступательно тела равен r B= r A+ AB, AB =const. d r B/dt=d r A/dt+ d AB /dt=d r A/dt => vB=vA, aB=aA

Билет №9.

  1. Вращение твердого тела вокруг неподвижной оси. Векторные и скалярные формулы для скоростей и ускорений точек тела.
  2. Теорема о приведении произвольной системы сил к силе и паре – основная теорема статики.

Билет №10.

  1. Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.
  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

2. Инварианты системы сил. Частные случаи приведения.

Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.

1.Главный вектор R =∑ F i=const.

2.Скалярное произведение главного вектора и главного момента L O R =const=FxMx+ FyMy+FzMz.

Доказательство: Умножим обе части выражения (1) на R:

M O1 R = M O R +( O1O x R) R Þ Пр R (L O1)= Пр R (L O)=LO1R∙ ∙cos(LO1^R)= LO2Rcos(LO2^R).

LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz

Приведение к простейшему виду:

1) M O=0, R ¹0 à к равнодействующей, равной R, проходящей через О.

2) R =0, M O¹0 à к паре с моментом M O (независимо от О).

R ¹0, M O¹0, M OR àк равнодействующей, равной R, проходящей через О1: ОО1=d= | M O| / | R |. Доказательство: R и пара сил с моментом M O лежат в одной плоскости Þ

Þ силы R и R ” уравновешиваются, систему можно заменить равнодействующей R ’.

3) M O R ¹0, R ¹0, M O¹0, R не перпендикулярна M O – приводится к динаме.

Доказательство: Разложим M O на 2 составляющих: M 1 и M 2. M 2 представим в виде пары сил R ’ и R ”. Силы R и R ” уравновешиваются, а M 1 перенесем в точку O1 (свободы).

В результате получили винт R ’, M 1, проходящий через точку О1.

Прямая, проходящая через точку О1 – ось динамы.

Билет №11.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
  2. Равновесие тела с учетом трения скольжения. Законы Кулона.

Билет №12.

  1. Мгновенный центр скоростей, способы нахождения МЦС.
  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

 

МЦС. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. v P= v O+ v PO=0, vO=ω∙OP=>OP= vO/ω.

Способы нахождения:

1) на основе физического условия задачи.

2) На основе предваритель-ного определения скорости двух точек.

 

Билет №13.

  1. Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.
  2. Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.

Билет №14.

  1. Определение скоростей точек плоской фигуры с помощью МЦС.
  2. Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.

Теорема Вариньона.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F 1, F 2,…, F n) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

M O(R)= r x R = r x∑ F i=∑(r x F i)= ∑ M Oi(F i).

Ч. т. д..

 

Билет №15.

  1. Мгновенный центр ускорений. Частные случаи.
  2. Лемма о параллельном переносе силы.

МЦУ. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

a Q= a A+ a AQ=0. Угол между a QA и QA tgα= a BAτ/ a BAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4 Þ

1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к a A отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

Билет №16.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Аналитическое выражение для моментов силы относительно осей координат.

Билет №17.

  1. Свободное движение твердого тела. Скорости и ускорения его точек.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Билет №18.

  1. Сложное движение точки. Основные понятия и определения. Примеры.
  2. Центр системы параллельных сил. Формулы для радиуса-вектора и координат центра системы параллельных сил.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Билет №19.

  1. Сложное движение точки. Теорема о сложении скоростей. Примеры.
  2. Центр тяжести тела. Методы нахождения центра тяжести.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор r C=∑Pi r i/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

1) Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

2) Разбиение: Если известны центры тяжести отдельных частей тела, то

r C=(V1 r C1+V2 r C2+…+Vn r Cn)/V

Отрицательные массы:

r C=Vспл r C-V1 r C1-…-Vn r Cn, где Vk, r Ck – объемы и радиус-векторы пустот тела.

3) Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Билет №20.

  1. Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
  2. Лемма о параллельном переносе силы.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

 

Билет №21.

  1. Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Ускорение Кориолиса. Правило Жуковского.

Полное ускорение точки А, участвующей в сложном движении

a A= a r+ a e+2 ω × v r. Слагаемое a К=2 ω × v r называется ускорением Кориолиса.

aK=2ωvrsin(ω, v r). Частные случаи:

А) ω º0 – смена знака

Б) v rº0 – относительный покой (смена знака движения).

В) sin(ω, v r)º0, ω||v r.

Правило Жуковского. Ускорение Кориолиса равно проекции относительной скорости на плоскость, перпендикулярную ω, увеличенной в 2ω раз и повернутой на 90° в направлении круговой стрелки ω.

2. Пара сил. ∑ моментов сил, составляющих пару.

Пара сил – система 2-х равных по модулю и противоположных по направлению сил, действующих на твердое тело. ∑ F =0; ∑ M ≠0.

Расстояние между линиями действия – плечо d. Пара сил характеризуется плоскостью действия, моментом пары.

ТЕОРЕМА: Векторный момент пары сил равен векторному моменту одной из её сил относительно другой.

Доказательство:

M O(F 1)+ M O(F 2)= r Ax F 1+ r Ax F 2= r Ax F 1- r Bx F 1=(r A- r B) x F 1. Из сложения треугольником OA + AB = OB => AB = OB - OA => M O(F 1)+ M O(F 2)= AB x F 1= M A(F 1) => сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты.

Билет №22.

  1. Сложение вращений твердого тела вокруг пересекающихся осей.
  2. Зависимость между главными моментами системы сил относительно двух центров приведения.

Билет №23.

  1. Определение ускорений точек плоской фигуры при известном положении МЦУ.
  2. Система сходящихся сил. Условия равновесия.

Билет №24.

  1. Способы определения углового ускорения при плоском движении твердого тела.
  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

Билет №25.

  1. Полная и локальная производные вектора. Формула Бура.
  2. Центр тяжести тела. Методы определения положения центра тяжести.

Билет №26.

  1. Пара вращений.
  2. Теорема о приведении произвольной системы сил к паре – основная теорема статики.

Пара вращений.

При противоположных направлениях векторов ω e и ω r и равенстве их модулей (ωe = ωr), если условие ω e=- ω r выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.

Действительно, ω = ω e+ ω r=

- ω r+ ω r=0, и для любой точки тела справедливы соотношения: v = ω e× r 1+ ω r ×r 2= ω e×(r 1- r 2)= ω e× O e O r= ω r× O r O e;

Следовательно, скорости всех точек тела в данном случае одинаковы и равны скорости поступательного движения.

Билет №27.

  1. Сложение вращений твердого тела вокруг параллельных осей.
  2. Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.

Билет №28.

  1. Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.
  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

Главный вектор, момент.

Пусть дана система сил (F 1, F 2,…, F n).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R =∑ F k.

R x=∑ F kx; cos(x,R)=Rx/R;

R y=∑ F ky; cos(y,R)=Ry/R;

R z=∑ F kz; cos(z,R)=Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(F k)

Билет №29.

  1. Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
  2. Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Билет №30.

  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
  2. Главный вектор и главный момент системы сил, формулы для их вычисления.

Главный вектор, момент.

Пусть дана система сил (F 1, F 2,…, F n).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R =∑ F k.

R x=∑ F kx; cos(x,R)=Rx/R;

R y=∑ F ky; cos(y,R)=Ry/R;

R z=∑ F kz; cos(z,R)=Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(F k)

Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

 

Векторная система координат.

Положение точки М определено, если радиус-вектор r из центра О выражен функцией времени t r= r (t) Þ задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

r (t), тогда

(t+Δt)à r (t+Δt), получаем

Δ r = r (t+Δt)- r (t) Þ

V срr /Δt. V =lim(Δ r /Δt)=d r /dt.

a срV/ Δt. a=lim(Δ v /Δt)=d V /dt= d² r (t)/dt².

Переход от векторной формы к координатной:

r (t)=x(t) i +y(t) j +z(t) k.

Обратно:

x= r (t)× i, y= r (t)× j, z= r (t)× k.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.