|
Гомополисахариды: крахмал, гликоген, целлюлоза. Первичная структура , гидролиз. Амилоза, амилопектин. Понятие о гетерополисахаридах.Гомополисахариды Крахмал. Этот полисахарид состоит из полимеров двух типов, построенных из d-глюкопиранозы: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях в процессе фотосинтеза и «запасается» в клубнях, корнях, семенах. Крахмал - белое аморфное вещество. В холодной воде нерастворим, в горячей набухает и некоторая часть его постепенно растворяется. При быстром нагревании крахмала из-за содержащейся в нем влаги (10-20%) происходит гидролитическое расщепление макромолекулярной цепи на более мелкие осколки и образуется смесь полисахаридов, называемых декстринами. Декстрины лучше растворяются в воде, чем крахмал. Такой процесс расщепления крахмала, или декстринизация, осуществляется при хлебопечении. Крахмал муки, превращенный в де- кстрины, легче усваивается вследствие большей растворимости. Амилоза - полисахарид, в котором остатки d-глюкопиранозы связаны а(1-4)-гликозидными связями, т. е. дисахаридным фрагмен- том амилозы является мальтоза. Цепь амилозы неразветвленная, включает до тысячи глюкозных остатков, молекулярная масса до 160 тыс. Амилопектин в отличие от амилозы имеет разветвленное строение (рис. 11.3). Его молекулярная масса достигает 1-6 млн.Амилопектин - разветвленный полисахарид, в цепях которого остатки D-глюкопиранозы связаны а(1^4)-гликозидными связями, а в точках разветвления - а(1^6)-связями. Между точками разветвления располагаются 20-25 глюкозных остатков. Гидролиз крахмала в желудочно-кишечном тракте происходит под действием ферментов, расщепляющих а(1-4)- и а(1-6)-гликозидные связи. Конечными продуктами гидролиза являются глюкоза и мальтоза. Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала. По строению он подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12, иногда даже 6 глюкозных звеньев. Условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина. Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при множестве концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы. Молекулярная масса гликогена необычайно велика и достигает 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии. Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы. Это используют в анализе тканей на содержание гликогена по количеству образовавшейся глюкозы. Аналогично гликогену в животных организмах такую же роль резервного полисахарида в растениях выполняет амилопектин, име- ющий менее разветвленное строение. Это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрого притока энергии, как иногда необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение). Целлюлоза. Этот полисахарид, называемый также клетчаткой, является наиболее распространенным растительным полисахаридом. Целлюлоза обладает большой механической прочностью и выполняет функцию опорного материала растений. Древесина содержит 50-70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.). Целлюлоза - линейный полисахарид, в котором остатки d-глюко- пиранозы связаны Р(1-4)-гликозидными связями. Дисахаридный фрагмент целлюлозы представляет собой целлобиозу. Макромолекулярная цепь не имеет разветвлений, в ней содержится 2,5-12 тыс. глюкозных остатков, что соответствует молеку- лярной массе от 400 тыс. до 1-2 млн. β-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюллозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними цепями. Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений. Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но необходима для нормального питания как балластное вещество. Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), нитраты (взрывчатые вещества, коллоксилин) и другие (вискозное волокно, целлофан). Гетерополисахариды Полисахариды соединительной ткани. Среди полисахаридов соединительной ткани наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). По структуре эти полисахариды имеют некоторые общие черты: их неразветвленные цепи состоят из дисахаридных остатков, в состав которых входят уроновая кислота (d-глюкуроновая, d-галактуроно- вая, l-идуроновая - эпимер d-глюкуроновой кислоты по С-5) и аминосахар (N-ацетилглюкозамин, N-ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты. Полисахариды соединительной ткани иногда называют кислыми мукополисахаридами (от лат. mucus - слизь), поскольку они содержат карбоксильные группы и сульфогруппы. Хондроитинсульфаты. Они состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных β(1-4)-гликозидными связями. N-Ацетилхондрозин построен из остатков D-глюкуроновой кислоты и N-ацетил-D-галактозамина, связанных β(1-3)-гликозидной связью. Как свидетельствует название, эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся в положении 4 или 6. Соответственно различают хон- дроитин-4-сульфат и хондроитин-6-сульфат. Молекулярная масса хондроитинсульфатов составляет 10-60 тыс. Гиалуроновая кислота. Этот полисахарид построен из дисахаридных остатков, соединенных β(1-4)-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных β(1-3)-гликозидной связью. Гепарин. В гепарине в состав повторяющихся дисахаридных еди- ниц входят остатки d-глюкозамина и одной из уроновых кислот - d-глюкуроновой или l-идуроновой. В количественном отношении преобладает l-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется α(1-4)-гликозидная связь, а между дисахаридными фрагментами - α(1-4)-связь, если фрагмент оканчивается l-идуро- новой кислотой, и β(1-4)-связь, если d-глюкуроновой кислотой. Аминогруппа у большинства остатков глюкозамина сульфатирована, а у некоторых из них ацетилирована. Кроме того, сульфатные группы содержатся у ряда остатков l-идуроновой кислоты (в положе- нии 2), а также глюкозамина (в положении 6). Остатки d-глюкуроно- вой кислоты не сульфатированы. В среднем на один дисахаридный фрагмент приходятся 2,5-3 сульфатные группы. Молекулярная масса гепарина равна 16-20 тыс. Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства. Многие гетерополисахариды, включая рассмотренные выше, содержатся не в свободном, а в связанном виде с полипептидными цепями. Такие высокомолекулярные соединения относят к смешан- ным биополимерам, для которых в настоящее время используется термин гликоконъюгаты. ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|