|
Аминоспирты: аминоэтанол (коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин, адреналин. Биологическая роль этих соединений.аминоспирты 2-Аминоэтанол (этаноламин, коламин) – структурный компонент сложных липидов, образуется путем размыкания напряженных трехчленных циклов этиленоксида и этиленимина аммиаком или водой соответственно (реакции нуклеофильного замещения). Холин (триметил-2-гидроксиэтиламмоний) — структурный элемент сложных липидов. Имеет большое значении, как витаминоподобное вещество, регулирующее жировой обмен. В организме холин может образоваться из аминокислоты серина. При этом сначала в результате декарбоксилирования серина получается 2-аминоэтанол (коламин), который затем подвергается исчерпывающему метилированию при участии S-аденозилметионина (SAM). В результате окисления свободного холина in vivo образуется биполярный ион бетаин, который может служить источником метильных групп в реакциях трансметилирования. Биологическая роль сложных эфиров холина. Замещенные фосфаты холина являются структурной основой фосфолипидов - важнейшего строительного материала клеточных мембран. Сложный эфир холина и уксусной кислоты - ацетилхолин - наиболее распространенный посредник при передаче нервного возбуждения в нервных тканях (нейромедиатор). Он образуется в организме при ацетилировании холина с помощью ацетил кофермента А. При ингибировании ацетилхолинэстеразы ацетилхолин накапливается в организме, что приводит к непрерывной передаче нервных импульсов и соответственно непрерывному сокращению мышечной ткани. На этом основано действие инсектицидов (химических средств уничтожения насекомых) и нервно паралитических ядов - зарина, табуна - фосфорорганических соединений, которые, реагируя с остатком серина, содержащимся в активном центре ацетилхолинэстеразы, ингибируют действие этого фермента. В медицинской практике используется ряд производных холина. Ацетилхолин хлорид применяется в качестве сосудорасширяющего средства. Карбамоилхолинхлорид (карбахолин) - холинуретан, сложный эфир холина и карбаминовой кислоты, не гидролизуется холинэстеразой и поэтому активнее холина и обладает более продолжительным действием. Дитилин - сложный эфир холина и янтарной кислоты, оказывает мышечно-расслабляющий эффект. К аминофенолам относятся соединения, в которых функциональные группы NH2 и OH присоединены к бензольному кольцу. Аминофенолы Два производных n-аминофенола применяются в медицине как обезболивающие и жаропонижающие средства. Это – парацетамол и, в меньшей степени, фенацетин Катехоламины – дофамин, норадреналин, адреналин – биогенные амины, продукты метаболизма аминокислоты фенилаланина. Катехоламины выполняют роль гормонов и нейромедиаторов. Адреналин является гормоном мозгового слоя надпочечников, норадреналин и дофамин – его предшественниками. Увеличение концентрации катехоламинов – типичная реакция на стресс. Их роль заключается в мобилизации организма на осуществление активной мозговой и мышечной деятельности. Дофамин – гормон, нейромедиатор, улучшает доставку кислорода, усиливает силу сердечных сокращений, работу почек, влияет на двигательную активность. Дофамин-гормон вырабатывается мозговым веществом надпочечников, а дофамин-нейромедиатор - областью среднего мозга, называемой «черным телом». Дофамин-нейромедиатор. Известны четыре «дофаминовых пути» - проводящих пути мозга, в которых роль переносчика нервного импульса играет дофамин. Один из них - мезолимбический путь - считается ответственным за продуцирование чувств удовольствия. Считается, что дофамин также участвует в процессе принятия человеком решений. По крайней мере, среди людей с нарушением синтеза/транспорта дофамина многие испытывают затруднения с принятием решений. Это связано с тем, что дофамин отвечает за «чувство награды», которое зачастую позволяет принять решение, обдумывая то или иное действие ещё на подсознательном уровне. Адреналин или метиламиноэтанолпирокатехин, образуется в надпочечниках и является гормоном, реализующим реакции типа «бей или беги». Его секреция резко повышается при стрессовых состояниях, пограничных ситуациях, ощущении опасности, при тревоге, страхе, при травмах, ожогах и шоковых состояниях. Адреналин: • усиливает и учащает сердцебиение • вызывает сужение сосудов мускулатуры, брюшной полости, слизистых оболочек • расслабляет мускулатуру кишечника, и расширяет зрачки.. Основная задача адреналина - адаптировать организм к стрессовой ситуации. Адреналин улучшает функциональную способность скелетных мышц. При продолжительном воздействии адреналина отмечается увеличение размеров миокарда и скелетных мышц. Вместе с тем длительное воздействие высоких концентраций адреналина приводит к усиленному белковому обмену, уменьшению мышечной массы и силы, похуданию и истощению. Это объясняет исхудание и истощение при дистрессе (стрессе, превышающем адаптационные возможности организма). Адреналин повышает кровяное давление, в связи с чем стрессы могут способствовать стойкому повышению давления и заболеванию сердечно-сосудистой системы. Адреналин часто применяют в качестве кровоостанавливающего средства. Получают его из надпочечников, а также синтетически из пирокатехина. Интересно, что лишь левовращающий (природный) адреналин обладает биологической активностью, тогда как правовращающий биологически неактивен. Норадреналин - гормон и нейромедиатор. Норадреналин также повышается при стрессе, шоке, травмах, тревоге, страхе, нервном напряжении. В отличие от адреналина, основное действие норадреналина заключается исключительно в сужении сосудов и повышении артериального давления. Сосудосуживающий эффект норадреналина выше, хотя продолжительность его действия короче. И адреналин, и норадреналин способны вызывать тремор - то есть дрожание конечностей, подбородка. Особенно ясно эта реакция проявляется у детей возраста 2-5 лет, при наступлении стрессовой ситуации. Непосредственно после определения ситуации как стрессовой, гипоталамус выделяет в кровь кортикотропин (адренокортикотропный гормон), который, достигнув надпочечников, побуждает синтез норадреналина и адреналина. Гидрокси- и аминокислоты. Реакции циклизации. Лактоны, лактамы и их гидролиз. Реакции элиминирования бетта-гидрокси- и бетта-аминокислот. (молочная бетта- и гамма-гидроксимасляные) двухосновные (яблочная, винная) трехосновная (лимонная) гидроксикислоты. Гидрокси- и амино кислоты. Реакции циклизации. Лактоны, лактамы и их гидролиз. Р-ии элиминирования гидрокси и аминокислот. Одноосновные (молочная и гидроксимасляная) двуосновные (яблочная,винная), трехосновные лимонная) гидроксикислоты .Γ-гидрокси- и γ-аминокислоты. Реакции циклизации. Лактоны, лактамы. Лактим-лактамная таутомерия. γ -Гидрокси- и γ -аминокислоты. Эти кислоты, как и кислоты с δ-расположением функциональных групп, при нагревании претерпевают внутримолекулярную циклизацию. Из гидроксикислот при этом образуются циклические сложные эфиры - лактоны, из аминокислот - циклические амиды - лактамы. Лактоны легко образуются уже при незначительном нагревании, а также в кислой среде. Принципиально так же происходит внутримолекулярное взаимодействие амино- и карбоксильной групп в γ- и δ-аминокислотах. Лактоны и лактамы, будучи соответственно сложными эфирами и амидами, гидролизуются в кислой или щелочной среде. Лактим-лактамная таутомерия Этот вид таутомерии характерен для азотсодержащих гетероциклов с фрагментом N=C—ОН. Взаимопревращение таутомерных форм связано с переносом протона от гидроксильной группы, напоминающей фенольную ОН-группу, к основному центру — пиридиновому атому азота и наоборот. Обычно лактамная форма в равновесии преобладает. Двухосновные (яблочная, винные), трехосновные (лимонная) гидроксикислоты. Доказательство наличия 2-х карбоксильных групп в винной кислоте. Образование лимонной кислоты в результате альдольного присоединения. Разложение лимонной кислоты по типу α-гидроксикарбоновых кислот. яблочная кислота (оксиянтарная кислота, гидроксибутандиовая кислота) НООС-СН(ОН)-СН2-СООН — двухосновнаяоксикарбоновая кислота. Бесцветные гигроскопичные кристаллы, хорошо растворимые в воде иэтиловом спирте. Винная кислота является органическим соединением – двухосновной оксикислотой.В естественном виде винная кислота встречается в винограде Винная кислота (иначе – диоксиянтарная или тартаровая кислота) представляет собой кристаллы без запаха и цвета, которые имеют очень кислый вкус. Как пищевая добавка винная кислота имеет название Е334. Винная кислота в естественном виде встречается во многих фруктах. Особенно ее много в винограде и цитрусовых. В некоторых продуктах она сочетается с магнием, кальцием или калием. Первоначально винную кислоту получали как побочный продукт винодельческой промышленности. Она в основном использовалась для предотвращения роста бактерий в вине в чанах и бочках.Лимонная кислота— одноводный кристаллогидрат. Хорошо растворима в воде: 133 грамма в 100 граммах воды при 20°С. Также растворяется в спирте, диэтиловом эфире. При нагревании до 175°С лимонная кислота переходит в аконитовую (А) и ацетондикарбоновую (Б) кислоты, выше 175°С образует итаконовую кислоту. Образование калиевых солей, обладающих различными физическими свойствами, является доказательством наличия двух карбоксильных групп в винной кислоте. разложение лимонной кислоты при нагревании в присутствии серной кислоты происходит по типу разложения а-гидроскикарбоновых кислот. Образующаяся при этом муравьиная и ацетодикарбоновая кислоты в результате последующих превращений дают конечные продукты- воду, оксид углерода, диоксид углерода и ацетон. Молочная кислота (лактат) CH3-CH(OH)-COOH — α-оксипропионовая (2-гидроксипропановая) кислота. Соли молочной кислоты называются лактатами. Молочная кислота образуется при молочнокислом брожении сахаров, в частности, в прокисшем молоке, при брожении вина и пива. Бета-гидроксимáсляная кислотá (также β-гидроксибутират, β-оксимасляная кислота, сокр. БОМК) — представляет собой органическое соединение с формулой СН3СН(ОН)CH2COOH, одноосновная карбоновая гидроксикислота. БОМК является хиральным соединением, имеющим два энантиомера, D-3-гидроксимасляная кислота и L-3-гидроксимасляная кислота (образуется в организме человека). Её окисленные и полимерные производные широко распространены в природе. Оксокислоты (альдегидо- и кетонокислоты). Характерные химические свойства. Пировиноградная, щавелоуксусная, альфа-кетоноглутаровая кислота, ацетоуксусный эфир и кетоенольная таутомерия на его примере. Биороль оксокислот.
ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между... Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|