Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Статические фильтры нулевого порядка





Статический фильтр – фильтр, который в аналоговом варианте представляет собой параллельное соединение (n+1) цепочек, состоящих из усилительного звена и звена чистого запаздывания.

ПФ такого фильтра имеет вид: , где

- время запаздывания, а n – порядок фильтра.

при n=0 имеем статический фильтр нулевого порядка W(p)=b0 → .

При использовании данной формулы y(t) будет смещённой оценкой полезного сигнала x(t),

т.е. - математическое ожидание выходного сигнала.

Для получения несмещённой оценки необходимо использовать следующую функцию: .

В этом случае .

b0 в качестве параметра настройки .

Для программной реализации статического фильтра нулевого порядка используют формулу: .

Статические фильтры первого порядка

ПФ таких фильтров имеет вид: .

Математическое ожидание:

Для того чтобы фильтр имел несмещенную оценку при учете

, где - параметры настройки фильтра.

Минимизируя значение ошибки фильтрации, получаем: .

Для программной реализации - - период опроса датчика.

Разностное уравнение: .

при n=0 имеем статический фильтр нулевого порядка W(p)=b0 .

При использовании данной формулы y(t) будет смещённой оценкой полезного сигнала x(t), т.е. - математическое ожидание выходного сигнала

Для получения несмещённой оценки необходимо использовать следующую функцию: .

В этом случае .

b0 в качестве параметра настройки .

Для программной реализации статического фильтра первого порядка используют формулу: .

Робастные фильтры

Фильтры данного типа предназначены для фильтрации аномальных выбросов. К числу робастных фильтров относят медианный фильтр, фильтр релейно – экспоненциального сглаживания.

Медианный фильтр

Реализация медианного фильтра осуществляется по формуле: , где М – параметр настройки,

med – оператор, означающий операцию оценки медианы.

Оценка медианы проводится по следующему алгоритму:

Проводится упорядочение отсчетов в ряд по возрастанию.

При нечетном М в качестве медианы выбирается центральное значение этого ряда. При четном значении в качестве медианы выбирается полусумма двух средних значений ряда.

Фильтр релейно – экспоненциального сглаживания

Алгоритм работы данного фильтра имеет вид:

, где - среднеквадратическое отклонение (СКО) помехи, - модуль приращения полезного сигнала на соседних отсчетах.

Разностные уравнения фильтров с заданной АЧХ

Если необходимо реализовать низкочастотный фильтр с заданной АЧХ, то для этих целей необходимо использовать ЛАЧХ (логарифмическая АЧХ).

- зависимость коэффициента передачи гармонического сигнала от частоты.

.

Необходимо определить ЛАЧХ, а затем ПФ и далее от ПФ перейти к дискретной ПФ, используя преобразования Лапласа.

Передаточная функция (ПФ) – отношение, в изображении Лапласа выходной функции к входной при нулевых начальных условиях.

, ;

, где р – комплексная величина.

Дискретное преобразование:

.

Произвели замену переменной:

.

Переход от ПФ к дискретной ПФ может быть произведен на основе отношения: .

После получения дискретной ПФ можно легко получить разностное уравнение, пользуясь теоремой о смещении (запаздывании):

- смещенная решетчатая функция

.

Не рекуррентная, не рекурсивная система: - наличие только входных сигналов в правой части, - наличие выходных сигналов.

Для АЧХ, вида

(*);

.

A и B подставляем в выражение (*) и ДПФ определена. Далее необходимо написать разностное уравнение и составить программу.

Теорема о смещении:

;

.

Преобразуем, применяя теорему о смещении, и получаем

.

Для высокочастотного фильтра с характеристикой: ;

;

.

Для полосового фильтра:

;

;

.

Для режекторного фильтра:

;

;

.

Для реализации процедуры фильтрации применяются и другие фильтры кроме рассмотренных, являющиеся более сложными адаптивными и АЧХ с крутыми фронтами. К числу таких фильтров относят фильтры Чебышева, Калмана, Винера.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2025 zdamsam.ru Размещенные материалы защищены законодательством РФ.