|
Формула Остроградского – ГауссаПусть компоненты векторного поля непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой области V и на ее кусочно гладкой границе . Тогда справедлива формула Остроградского – Гаусса . Заметим, что левая часть формулы представляет собой поток векторного поля через поверхность . Доказательство. 1) Формула Остроградского – Гаусса, в силу произвольности P, Q, R состоит из трех частей, в каждую из которых входит одна из компонент векторного поля P, Q, R. В самом деле, можно взять P = 0, Q = 0 и доказывать отдельно часть формулы в которую входит только R. Остальные части формулы (при P = 0, R = 0, Q = 0, R = 0) доказываются аналогично. Будем доказывать часть формулы 2) Для доказательства выбранной части формулы представим пространственную область V в виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными оси OZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов по полным поверхностям цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических тел будут сокращаться из-за противоположного направления внешних нормалей на общих границах. Итак, будем доказывать соотношение для цилиндрического тела V, проектирующегося в область D на плоскости OXY. Пусть «верхняя» граница цилиндрического тела – поверхность описывается уравнением , «нижняя» граница – поверхность описывается уравнением . Боковую поверхность цилиндрического тела, параллельную оси OZ, обозначим . Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, , так как нормаль на боковой поверхности ортогональна оси OZ и . Заметим также, что на «верхней» поверхности , а на «нижней поверхности . Поэтому при переходе от поверхностного интеграла по к двойному интегралу по области D и обратно надо менять знак, а при переходе от поверхностного интеграла по к двойному интегралу по области D и обратно менять знак не надо.
Замечание. Формулу Остроградского – Гаусса можно записать в «полевом» виде - поток векторного поля через замкнутую поверхность равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью . Дивергенция векторного поля (расходимость) есть . Дивергенция – это характеристика векторного поля, инвариантная относительно системы координат. Покажем это.
Инвариантное определение дивергенции Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестность VM – шар радиуса r с центром в точке M. Обозначим - ее границу – сферу радиуса r. По теореме о среднем для тройного интеграла (по формуле Остроградского – Гаусса). Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точке M. . Это и есть инвариантное определение дивергенции. Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если >0) или стока (если <0) векторного поля в точке M. Если >0, то точка M – источник векторного поля, если <0, то точка M – сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».
Пример. Определить расположение источников и стоков векторного поля . Выяснить, является ли точка M(1,2,3) источником или стоком. . Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0 – стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M – источник, так как .
Свойства дивергенции 1) Линейность.
. 2) , где - постоянное векторное поле. 3) , где - скалярное поле. = = . ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право... Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|