|
Соленоидальное поле и его свойстваВекторное поле называется соленоидальным в области V, если в любой точке M этой области Свойства соленоидального поля 1) Для того чтобы поле было соленоидальным, необходимо и достаточно, чтобы поток через любую замкнутую поверхность равнялся нулю. Необходимость следует из формулы Остроградского – Гаусса, достаточность – из инвариантного определения дивергенции.
2) Поток соленоидального поля через любую поверхность, окружающую изолированный источник или сток, один и тот же.
Рассмотрим две пространственных области. Одна из них лежит выше плоскости и ограничена верхними частями поверхностей и верхней частью плоскости. Вторая ограничена нижними частями поверхностей и нижней частью плоскости. В той и другой области поле соленоидально. Следовательно, поток векторного поля через границы этих областей равен нулю. , . Складывая эти выражения, получим .
3) Поток соленоидального поля через произвольное сечение векторной трубки один и тот же.
Следствие. Векторные линии соленоидального поля не могут начинаться и заканчиваться внутри поля. В самом деле, иначе конечный поток приходился бы на нулевую площадь источника или стока, что требовало бы бесконечной мощности источника или стока.
Лекция 9 Формула Стокса Ротор векторного поля Назовем ротором векторного поля вектор Свойства ротора 1) Линейность = + + = . 2) - постоянное векторное поле.
3) = + + = . Теорема Стокса
Пусть пространственно односвязная область V содержит кусочно-гладкую поверхность с кусочно-гладкой границей . Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные по своим аргументам до второго порядка включительно в области V. Тогда справедлива формула Стокса
Замечание. Нормаль к поверхности проведена так, чтобы наблюдатель, находясь на конце вектора нормали, видел бы обход контура , совершающимся в положительном направлении (так, чтобы область, границей которой является контур, при обходе контура находилась бы «по левую руку»).
Докажем - часть формулы Стокса, в которой содержится только компонента P. Предположим, что поверхность описывается уравнением . Тогда нормаль к поверхности представляет собой вектор Отсюда видно, что . Вспомним еще, что .
= (на поверхности , поэтому под интегралом стоит частная производная P по y с учетом зависимости z от y на поверхности ) = Используем формулу Грина для области D с ее границей . Ее можно записать в виде . Нам понадобится только та ее часть, которая относится к функции P . Продолжаем равенство дальше. = . В самом деле, на контуре , а переменные x, y на том и другом контуре те же, так как контур - это проекция контура на плоскость OXY (параллельно оси OZ). Одна из частей формулы Стокса доказана.
Линейным интегралом векторного поля по дуге L называется криволинейный интеграл . Линейный интеграл имеет смысл работы векторного поля при перемещении по дуге.
Циркуляцией векторного поля называется линейный интеграл по замкнутому контуру. . Вводя эти понятия, можно записать формулу Стокса в «полевой» форме .
Мы определили ротор векторного поля в декартовой системе координат, однако ротор – это характеристика самого векторного поля Поэтому необходимо дать определение ротора, которое не зависит от выбора системы координат.
Инвариантное определение ротора Рассмотрим произвольную точку M в области V. Проведем через нее поверхность , границей которой служит контур . Пусть поверхность и контур удовлетворяют условиям теоремы Стокса. По теореме о среднем для поверхностного интеграла и формуле Стокса получим . Здесь, как и ранее - обозначение области и ее площади. Из этого соотношения, стягивая контур к точке M, получим Это и есть инвариантное определение ротора. Правая часть формулы – это поверхностная плотность циркуляции векторного поля (энергии в точке M вращения векторного поля или работы векторного поля при вращении вокруг некоторого направления, определяемого вектором ). Левая часть – это проекция ротора на это направление. Если направление совпадает с направлением ротора и - единичный вектор, то левая часть равна модулю ротора. Поэтому модуль ротора векторного поля равен максимальному значению поверхностной плотности циркуляции векторного поля. Левая часть достигает максимума при коллинеарности направления и ротора векторного поля. Поэтому направление ротора векторного поля – это то направление, вокруг которого поверхностная плотность циркуляции векторного поля – наибольшая. Пример. Найти ротор линейной скорости вращения с постоянной угловой скоростью
Векторное поле линейной скорости . ,
Ранее была сформулирована теорема о полном дифференциале для пространственной кривой. В ее доказательстве не хватало только одного пункта – перехода от пункта 3) к пункту 2). Все остальное доказывается аналогично случаю плоской кривой.
ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры... Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|