|
ГЛАВА 4. РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ
Система линейных уравнений
Системой m линейных уравнений с n неизвестными называется система m алгебраических уравнений первой степени вида
где - неизвестные, подлежащие определению; - числа, называемые коэффициентами при неизвестных; - числа, называемые свободными членами. Решением системы уравнений (4.1.1) называется совокупность n чисел таких, что если в каждое уравнение системы вместо неизвестных подставить эти числа ( вместо , вместо вместо ), то все уравнения обратятся в тождества. Если система линейных уравнений (4.1.1) имеет хотя бы одно решение, то она называется совместной. В противном случае система называется несовместной. Совместная система, имеющая единственное решение, называется определенной, а система, имеющая более одного решения – неопределенной. Две системы линейных уравнений называются эквивалентными, если любое решение каждой из них является одновременно решением и другой системы. Две произвольные несовместные системы считаются эквивалентными. Системе линейных уравнений (4.1.1) поставим в соответствие матрицу и расширенную матрицу , полученную присоединением к матрице А столбца свободных членов.
Методы решения системы n линейных уравнений с n неизвестными
Рассмотрим систему n линейных уравнений с n неизвестными
Определитель | A | матрицы А называется определителем системы (4.2.1). Теорема Крамера. Если определитель | A | системы (4.2.1) отличен от нуля, то система совместна и имеет единственное решение. Доказательство. Пусть система (4.2.1) совместна и - одно из ее решений. Тогда получим n тождеств:
Умножим обе части первого из равенств (4.2.2) на алгебраическое дополнение , обе части второго равенства умножим на алгебраическое дополнение и т.д. и обе части n -ого равенства – на . Складывая левые и правые части полученных выражений, придем к следующему равенству:
Коэффициент при равен определителю | A | системы (4.2.1), коэффициент при равен нулю, а правая часть равенства (4.2.3) является определителем, полученным из определителя | A | путем замены j -го столбца столбцом свободных членов. Обозначим данный определитель через
Тогда равенство (4.2.3) примет вид: , откуда
Из формулы (4.2.4) следует, что если система (4.2.1) совместна, то она обладает единственным решением. Формулы (4.2.4) называются формулами Крамера. Непосредственной подстановкой значений , во все уравнения системы убедимся в том, что они образуют ее решение: . При , при , . Таким образом, получим .
Теорема доказана. Пример. Решить систему линейных уравнений методом Крамера:
Решение. Вычислим определитель : , , , откуда
Решение системы линейных уравнений с определителем | A |, отличным от нуля, можно найти с помощью обратной матрицы. Для этого запишем систему (4.2.1) в виде матричного уравнения
где .
Решение матричного уравнения (4.2.5) имеет вид
Пример. Решить систему линейных уравнений с помощью обратной матрицы Решение. Вычислим для матрицы ее обратную матрицу .
Определим неизвестную матрицу-столбец Х: , откуда
Формулы Крамера (4.2.4) могут быть получены из выражения (4.2.6). Действительно, запишем матричное равенство в развернутом виде: . Из полученного выражения непосредственно следуют формулы Крамера: .
Теорема Кронекера-Капелли
Теорема. Система линейных уравнений (4.1.1) совместна тогда и только тогда, когда . Доказательство. Необходимость. Пусть система (4.1.1) совместна и пусть числа - одно из ее решений. Подставляя эти числа вместо неизвестных в систему (4.1.1), получим m тождеств, которые показывают, что последний столбец матрицы является линейной комбинацией всех остальных столбцов, взятых соответственно с коэффициентами . Всякий другой столбец матрицы входит и в матрицу А. Поэтому максимальное число линейно независимых столбцов матриц А и совпадает. Следовательно, . Достаточность. Пусть дано, что . Отсюда следует, что максимальное число линейно независимых столбцов матриц А и совпадает и равно r. Для определенности предположим, что первые r столбцов матриц А и линейно независимы, а остальные (n-r) столбцов является их линейными комбинациями. Выражая последний столбец матрицы А как линейную комбинацию первых r столбцов, получим: откуда следует, что числа являются решением системы (4.1.1), т.е. система (4.1.1) совместна. Теорема доказана. На основании теоремы Кронекера-Капелли имеем: 1. Если , то система (4.1.1) несовместна; 2. Если , то система (4.1.1) совместна. Пусть для определенности базисный минор порядка r расположен в верхнем левом углу матрицы А. Тогда первые r строк матрицы А линейно независимы, а остальные ее строки являются линейной комбинацией первых r строк. Но это означает, что первые r уравнений системы (4.1.1) линейно независимы, а остальные (m-r) ее уравнений являются их линейными комбинациями. Поэтому достаточно решить систему r уравнений; решения такой системы будут, очевидно, удовлетворять и остальным (m-r) уравнениям.
При этом возможны два случая: 1. . Тогда систему, состоящую из первых r уравнений системы (4.1.1) можно решить, например, по правилу Крамера. В этом случае система имеет единственное решение, т.е. система совместна и определена;
2. . Рассмотрим первые r уравнений системы (4.1.1). Оставив в левых частях первые r неизвестных, перенесем остальные в правые части. Получим систему:
Очевидно, что полученная система и, следовательно, система (4.1.1) являются совместными и неопределенными. Таким образом, если , то система (4.1.1) совместна (определенная или неопределенная), если , то система (4.1.1) несовместна. Если в системе n линейных уравнений с n неизвестными определитель системы равен нулю, то . Тогда если , то система является совместной и неопределенной. Если , то система несовместна. Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности системы (4.1.1), но не дает способа нахождения решения этой системы. Рассмотрим метод Жордана-Гаусса – метод решения системы m линейных уравнений с n неизвестными.
Метод Жордана-Гаусса
Метод Жордана-Гаусса основан на элементарных преобразованиях (п.3.2) строк расширенной матрицы системы (4.1.1). В результате каждого из элементарных преобразований расширенная матрица изменяется, однако системы линейных уравнений, соответствующие полученным матрицам, эквивалентны исходной системе линейных уравнений. Пусть дана система m линейных уравнений с n неизвестными. Применяя элементарные преобразования, построим эквивалентную систему специального вида. Для этого выберем в качестве первого уравнений одно из тех уравнений системы, где коэффициент при х 1 отличен от нуля. Не нарушая общности, предположим, что . Тогда первым уравнением системы будет уравнение . Умножим первое уравнение на . Затем умножим это же уравнение на , и прибавим его почленно к уравнениям системы с номерами i=2,3,…,m. После этого преобразования в уравнениях с номерами i>1 будет исключено неизвестное х 1. Первый шаг метода Жордана-Гаусса закончен.
. Может случиться, что на первом шаге вместе с неизвестными х 1 будут исключены неизвестными , но найдется хотя бы одно уравнение, в котором сохранится неизвестное . Одно из таких уравнений примем в качестве второго уравнения системы. В этом случае расширенная матрица , соответствующая полученной системе, имеет вид: .
Используем второе уравнение для исключения неизвестного из всех уравнений, кроме второго. После второго шага метода Жордана-Гаусса получим расширенную матрицу
.
Продолжая процесс, после r шагов получим матрицу , содержащую r единичных столбцов на месте первых n столбцов матрицы А (r – ранг матрицы А системы). При этом возможны три случая: 1. Если , то матрица преобразуется в матрицу
Система имеет единственное решение: . 2. Если и r<n, то
Система имеет бесконечное множество решений. Общее решение имеет вид:
Неизвестные называются базисными. – свободными неизвестными. Свободным неизвестным можно придавать какие угодно значения, получая при этом соответствующие значения неизвестных . В результате имеем бесконечное множество частных значений. Среди частных решений системы выделим базисные решения, которые получают при равенстве нулю всех свободных неизвестных. Очевидно, что одним из базисных решений является следующее: . В общем случае число базисных решений не превышает . 2. Если , то где хотя бы один из элементов отличен от нуля. В этом случае система (4.1.1) несовместна. Таким образом, метод Жордана-Гаусса состоит из r итераций (r шагов). На каждой S -ой итерации выбирается направляющий элемент соответственно направляющие строка и столбец. С помощью элементарных преобразований столбец преобразуется в единичный с единицей в строке . Рассмотрим алгоритм произвольной итерации метода Жордана-Гаусса. Положим . Шаг 1. Сформировать множество . Шаг 2. Если , то процесс элементарных преобразований закончить. В противном случае перейти к шагу 3. Шаг 3. Если для , то процесс элементарных преобразований закончить. В противном случае найти направляющий элемент и перейти к шагу 4. Шаг 4. Разделить направляющую строку на . Шаг 5. К i -ой строке, , прибавим строку , умноженную на . Покажем, что столбец преобразуется в единичный с единицей в строке . Пусть . Элементы матрицы выражаются через элементы матрицы следующим образом:
Полагая j=k, из (4.4.1) и (4.4.3) имеем . Пример. Решить систему линейных уравнений методом Жордана-Гаусса.
Решение. Составим из данной системы расширенную матрицу Полагаем . Итерация 1. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим третью строку на . Шаг 5. К первой, второй и четвертой строкам прибавляем третью строку, соответственно умноженную на –2, -2, -3. В результате матрица преобразуется в матрицу
.
Итерация 2. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим первую строку на . Шаг 5. Ко второй, третьей и четвертой строкам прибавляем первую строку, соответственно умноженную на –4, -3, 1. Получим матрицу .
Итерация 3. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим четвертую строку на . Шаг 5. К первой, второй, третьей строкам прибавляем четвертую строку, соответственно умноженную на 0, -5, -2. Получим матрицу . Итерация 4. Шаг 1. . Шаг 2. , переходим к шагу 3. Шаг 3. Находим . Шаг 4. Делим четвертую строку на . Шаг 5. К первой, третьей и четвертой строкам прибавляем вторую строку, соответственно умноженную на -1, 2, 0. Получим матрицу . Итерация 5. Шаг 1. . Шаг 2. , поэтому процесс элементарных преобразований закончен. На основании вида матрицы получаем единственное решение исходной системы: .
Решение. Составим расширенную матрицу . В результате итерации 1, полагая , получим матрицу После итерации 2, полагая , получим матрицу
Итерация 3. Шаг 1. . Шаг 2. . Шаг 3. Так как , то процесс элементарных преобразований закончен. Матрица определяет общее решение системы: - базисные, - свободные переменные. Получим одно из базисных решений: .
Решение. Матрицы , , имеют вид:
Очевидно, что процесс элементарных преобразований следует закончить, так как . Из первой (или третьей) строки матрицы следует, что исходная система линейных уравнений несовместна. Действительно, первой строке соответствует уравнение , которое не может быть удовлетворено ни при каких значениях неизвестных . Используя метод Жордана-Гаусса, рассмотрим еще один метод вычисления обратной матрицы . Рассмотрим матричное уравнение
где , Е – единичная матрица. Очевидно, что матричное уравнение (4.4.5) имеет единственное решение .
Решение матричного уравнения (4.4.5) сводится к решению n систем n линейных уравнений с n неизвестными вида
Системе линейных уравнений (4.4.6) соответствует расширенная матрица . Применяя к матрице алгоритм метода Жордана-Гаусса, получим матрицу . Покажем, что . Расширенной матрице соответствует матричное уравнение , которое имеет единственное решение Х=В. Матрица получена из матрицы методом Жордана-Гаусса. Поэтому системы линейных уравнений, соответствующие матрицам и , равносильны, т.е. имеют одно и то же решение. Отсюда следует, что , следовательно, . Таким образом, чтобы для невырожденной матрицы А вычислить обратную матрицу , необходимо составить матрицу . Методом Жордана-Гаусса в матрице преобразовать матрицу А к виду единичной матрицы Е, тогда на месте единичной матрицы Е получим обратную матрицу . Пример. Вычислить обратную матрицу для матрицы . Решение. Составим матрицу . На итерации 1, полагая , получим . На итерации 2, полагая , получим . На итерации 3, полагая , получим , откуда . ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала... Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все... Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом... ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования... Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
|